Pilih preferensi cookie Anda

Kami menggunakan cookie penting serta alat serupa yang diperlukan untuk menyediakan situs dan layanan. Kami menggunakan cookie performa untuk mengumpulkan statistik anonim sehingga kami dapat memahami cara pelanggan menggunakan situs dan melakukan perbaikan. Cookie penting tidak dapat dinonaktifkan, tetapi Anda dapat mengklik “Kustom” atau “Tolak” untuk menolak cookie performa.

Jika Anda setuju, AWS dan pihak ketiga yang disetujui juga akan menggunakan cookie untuk menyediakan fitur situs yang berguna, mengingat preferensi Anda, dan menampilkan konten yang relevan, termasuk iklan yang relevan. Untuk menerima atau menolak semua cookie yang tidak penting, klik “Terima” atau “Tolak”. Untuk membuat pilihan yang lebih detail, klik “Kustomisasi”.

Jalankan contoh permintaan Amazon Bedrock API menggunakan notebook Amazon SageMaker AI

Mode fokus
Jalankan contoh permintaan Amazon Bedrock API menggunakan notebook Amazon SageMaker AI - Amazon Bedrock

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Terjemahan disediakan oleh mesin penerjemah. Jika konten terjemahan yang diberikan bertentangan dengan versi bahasa Inggris aslinya, utamakan versi bahasa Inggris.

Bagian ini memandu Anda mencoba beberapa operasi umum di Amazon Bedrock dengan notebook Amazon SageMaker AI untuk menguji apakah izin peran Amazon Bedrock Anda disiapkan dengan benar. Sebelum Anda menjalankan contoh berikut, Anda harus memeriksa apakah Anda telah memenuhi prasyarat berikut:

Prasyarat

Setelah Anda membuka notebook SageMaker AI Anda, Anda dapat mencoba contoh berikut:

Buat daftar model fondasi yang ditawarkan Amazon Bedrock

Contoh berikut menjalankan ListFoundationModelsoperasi menggunakan klien Amazon Bedrock. ListFoundationModelsdaftar model foundation (FMs) yang tersedia di Amazon Bedrock di wilayah Anda. Jalankan SDK berikut untuk skrip Python untuk membuat klien Amazon Bedrock dan menguji operasinya: ListFoundationModels

""" Lists the available Amazon Bedrock models in an AWS Region. """ import logging import json import boto3 from botocore.exceptions import ClientError logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def list_foundation_models(bedrock_client): """ Gets a list of available Amazon Bedrock foundation models. :return: The list of available bedrock foundation models. """ try: response = bedrock_client.list_foundation_models() models = response["modelSummaries"] logger.info("Got %s foundation models.", len(models)) return models except ClientError: logger.error("Couldn't list foundation models.") raise def main(): """Entry point for the example. Change aws_region to the AWS Region that you want to use.""" aws_region = "us-east-1" bedrock_client = boto3.client(service_name="bedrock", region_name=aws_region) fm_models = list_foundation_models(bedrock_client) for model in fm_models: print(f"Model: {model["modelName"]}") print(json.dumps(model, indent=2)) print("---------------------------\n") logger.info("Done.") if __name__ == "__main__": main()

Jika skrip berhasil, respons mengembalikan daftar model dasar yang tersedia di Amazon Bedrock.

Kirim prompt teks ke model dan hasilkan respons

Contoh berikut menjalankan operasi Converse menggunakan klien Amazon Bedrock. Conversememungkinkan Anda mengirimkan prompt untuk menghasilkan respons model. Jalankan skrip SDK for Python berikut untuk membuat klien runtime Amazon Bedrock dan menguji operasi Converse:

# Use the Conversation API to send a text message to Amazon Titan Text G1 - Express. import boto3 from botocore.exceptions import ClientError # Create an Amazon Bedrock Runtime client. brt = boto3.client("bedrock-runtime") # Set the model ID, e.g., Amazon Titan Text G1 - Express. model_id = "amazon.titan-text-express-v1" # Start a conversation with the user message. user_message = "Describe the purpose of a 'hello world' program in one line." conversation = [ { "role": "user", "content": [{"text": user_message}], } ] try: # Send the message to the model, using a basic inference configuration. response = brt.converse( modelId=model_id, messages=conversation, inferenceConfig={"maxTokens": 512, "temperature": 0.5, "topP": 0.9}, ) # Extract and print the response text. response_text = response["output"]["message"]["content"][0]["text"] print(response_text) except (ClientError, Exception) as e: print(f"ERROR: Can't invoke '{model_id}'. Reason: {e}") exit(1)

Jika perintah berhasil, respons mengembalikan teks yang dihasilkan oleh model sebagai respons terhadap prompt.

PrivasiSyarat situsPreferensi cookie
© 2025, Amazon Web Services, Inc. atau afiliasinya. Semua hak dilindungi undang-undang.