Select your cookie preferences

We use essential cookies and similar tools that are necessary to provide our site and services. We use performance cookies to collect anonymous statistics, so we can understand how customers use our site and make improvements. Essential cookies cannot be deactivated, but you can choose “Customize” or “Decline” to decline performance cookies.

If you agree, AWS and approved third parties will also use cookies to provide useful site features, remember your preferences, and display relevant content, including relevant advertising. To accept or decline all non-essential cookies, choose “Accept” or “Decline.” To make more detailed choices, choose “Customize.”

Submit a single prompt with InvokeModel

Focus mode
Submit a single prompt with InvokeModel - Amazon Bedrock

You run inference on a single prompt by using the InvokeModel and InvokeModelWithResponseStream API operations and specifying a model. Amazon Bedrock models differ in whether they accept text, image, or video inputs and whether they can produce outputs of text, image, or embeddings. Some models can return the response in a stream. To check model support for input, output, and streaming support, do one of the following:

Important

InvokeModel and InvokeModelWithResponseStream are restricted in the following ways:

Run model inference on a prompt by sending an InvokeModel or InvokeModelWithResponseStream request with an Amazon Bedrock runtime endpoint.

The following fields are required:

Field Use case
modelId To specify the model, inference profile, or prompt from Prompt management to use. To learn how to find this value, see Submit prompts and generate responses using the API.
body To specify the inference parameters for a model. To see inference parameters for different models, see Inference request parameters and response fields for foundation models. If you specify a prompt from Prompt management in the modelId field, omit this field (if you include it, it will be ignored).

The following fields are optional:

Field Use case
accept To specify the media type for the request body. For more information, see Media Types on the Swagger website.
contentType To specify the media type for the response body. For more information, see Media Types on the Swagger website.
performanceConfigLatency To specify whether to optimize a model for latency. For more information, see Optimize model inference for latency.
guardrailIdentifier To specify a guardrail to apply to the prompt and response. For more information, see Test a guardrail.
guardrailVersion To specify a guardrail to apply to the prompt and response. For more information, see Test a guardrail.
trace To specify whether to return the trace for the guardrail you specify. For more information, see Test a guardrail.

Invoke model code examples

This topic provides some basic examples for running inference using a single prompt with the InvokeModel API. For more examples with different models, visit the following resources:

The following examples assume that you've set up programmatic access such that you automatically authenticate to the AWS CLI and the SDK for Python (Boto3) in a default AWS Region when you run these examples. For information on setting up programmating access, see Getting started with the API.

Note

Review the following points before trying out the examples:

  • You should test these examples in US East (N. Virginia) (us-east-1), which supports all the models used in the examples.

  • The body parameter can be large, so for some CLI examples, you'll be asked to create a JSON file and provide that file into the --body argument instead of specifying it in the command line.

  • For the image and video examples, you'll be asked to use your own image and video. The examples assume that your image file is named image.png and that your video file is named video.mp4.

  • You might have to convert images or videos into a base64-encoded string or upload them to an Amazon S3 location. In the examples, you'll have to replace the placeholders with the actual base64-encoded string or S3 location.

Expand a section to try some basic code examples.

The following examples generate a text response to a text prompt using the Amazon Titan Text Premier model. Choose the tab for your preferred method, and then follow the steps:

CLI

Run the following command in a terminal and find the generated response in a file called invoke-model-output.txt.

aws bedrock-runtime invoke-model \ --model-id amazon.titan-text-premier-v1:0 \ --body '{ "inputText": "Describe the purpose of a 'hello world' program in one line.", "textGenerationConfig": { "maxTokenCount": 512, "temperature": 0.5 } }' \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
Python

Run the following Python code example to generate a text response:

# Use the native inference API to send a text message to Amazon Titan Text. import boto3 import json from botocore.exceptions import ClientError # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client("bedrock-runtime", region_name="us-east-1") # Set the model ID, e.g., Titan Text Premier. model_id = "amazon.titan-text-premier-v1:0" # Define the prompt for the model. prompt = "Describe the purpose of a 'hello world' program in one line." # Format the request payload using the model's native structure. native_request = { "inputText": prompt, "textGenerationConfig": { "maxTokenCount": 512, "temperature": 0.5, }, } # Convert the native request to JSON. request = json.dumps(native_request) try: # Invoke the model with the request. response = client.invoke_model(modelId=model_id, body=request) except (ClientError, Exception) as e: print(f"ERROR: Can't invoke '{model_id}'. Reason: {e}") exit(1) # Decode the response body. model_response = json.loads(response["body"].read()) # Extract and print the response text. response_text = model_response["results"][0]["outputText"] print(response_text)

The following examples generate a text response to a text prompt using the Amazon Titan Text Premier model. Choose the tab for your preferred method, and then follow the steps:

CLI

Run the following command in a terminal and find the generated response in a file called invoke-model-output.txt.

aws bedrock-runtime invoke-model \ --model-id amazon.titan-text-premier-v1:0 \ --body '{ "inputText": "Describe the purpose of a 'hello world' program in one line.", "textGenerationConfig": { "maxTokenCount": 512, "temperature": 0.5 } }' \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
Python

Run the following Python code example to generate a text response:

# Use the native inference API to send a text message to Amazon Titan Text. import boto3 import json from botocore.exceptions import ClientError # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client("bedrock-runtime", region_name="us-east-1") # Set the model ID, e.g., Titan Text Premier. model_id = "amazon.titan-text-premier-v1:0" # Define the prompt for the model. prompt = "Describe the purpose of a 'hello world' program in one line." # Format the request payload using the model's native structure. native_request = { "inputText": prompt, "textGenerationConfig": { "maxTokenCount": 512, "temperature": 0.5, }, } # Convert the native request to JSON. request = json.dumps(native_request) try: # Invoke the model with the request. response = client.invoke_model(modelId=model_id, body=request) except (ClientError, Exception) as e: print(f"ERROR: Can't invoke '{model_id}'. Reason: {e}") exit(1) # Decode the response body. model_response = json.loads(response["body"].read()) # Extract and print the response text. response_text = model_response["results"][0]["outputText"] print(response_text)

The following code examples generate an image using a text prompt with the Stable Diffusion XL 1.0 model. Choose the tab for your preferred method, and then follow the steps:

CLI

Run the following command in a terminal and find the generated response in a file called invoke-model-output.txt. The bytes that represent the image can be found in the base64 field in the response:

aws bedrock-runtime invoke-model \ --model-id stability.stable-diffusion-xl-v1 \ --body '{ "text_prompts": [{"text": "A stylized picture of a cute old steampunk robot."}], "style_preset": "photographic", "seed": 0, "cfg_scale": 10, "steps": 30 }' \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
Python

Run the following Python code example to generate an image and find the resulting stability_1.png image file in a folder called output.

# Use the native inference API to create an image with Amazon Titan Image Generator import base64 import boto3 import json import os import random # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client("bedrock-runtime", region_name="us-east-1") # Set the model ID, e.g., Titan Image Generator G1. model_id = "amazon.titan-image-generator-v1" # Define the image generation prompt for the model. prompt = "A stylized picture of a cute old steampunk robot." # Generate a random seed. seed = random.randint(0, 2147483647) # Format the request payload using the model's native structure. native_request = { "taskType": "TEXT_IMAGE", "textToImageParams": {"text": prompt}, "imageGenerationConfig": { "numberOfImages": 1, "quality": "standard", "cfgScale": 8.0, "height": 512, "width": 512, "seed": seed, }, } # Convert the native request to JSON. request = json.dumps(native_request) # Invoke the model with the request. response = client.invoke_model(modelId=model_id, body=request) # Decode the response body. model_response = json.loads(response["body"].read()) # Extract the image data. base64_image_data = model_response["images"][0] # Save the generated image to a local folder. i, output_dir = 1, "output" if not os.path.exists(output_dir): os.makedirs(output_dir) while os.path.exists(os.path.join(output_dir, f"titan_{i}.png")): i += 1 image_data = base64.b64decode(base64_image_data) image_path = os.path.join(output_dir, f"titan_{i}.png") with open(image_path, "wb") as file: file.write(image_data) print(f"The generated image has been saved to {image_path}")

The following code examples generate an image using a text prompt with the Stable Diffusion XL 1.0 model. Choose the tab for your preferred method, and then follow the steps:

CLI

Run the following command in a terminal and find the generated response in a file called invoke-model-output.txt. The bytes that represent the image can be found in the base64 field in the response:

aws bedrock-runtime invoke-model \ --model-id stability.stable-diffusion-xl-v1 \ --body '{ "text_prompts": [{"text": "A stylized picture of a cute old steampunk robot."}], "style_preset": "photographic", "seed": 0, "cfg_scale": 10, "steps": 30 }' \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
Python

Run the following Python code example to generate an image and find the resulting stability_1.png image file in a folder called output.

# Use the native inference API to create an image with Amazon Titan Image Generator import base64 import boto3 import json import os import random # Create a Bedrock Runtime client in the AWS Region of your choice. client = boto3.client("bedrock-runtime", region_name="us-east-1") # Set the model ID, e.g., Titan Image Generator G1. model_id = "amazon.titan-image-generator-v1" # Define the image generation prompt for the model. prompt = "A stylized picture of a cute old steampunk robot." # Generate a random seed. seed = random.randint(0, 2147483647) # Format the request payload using the model's native structure. native_request = { "taskType": "TEXT_IMAGE", "textToImageParams": {"text": prompt}, "imageGenerationConfig": { "numberOfImages": 1, "quality": "standard", "cfgScale": 8.0, "height": 512, "width": 512, "seed": seed, }, } # Convert the native request to JSON. request = json.dumps(native_request) # Invoke the model with the request. response = client.invoke_model(modelId=model_id, body=request) # Decode the response body. model_response = json.loads(response["body"].read()) # Extract the image data. base64_image_data = model_response["images"][0] # Save the generated image to a local folder. i, output_dir = 1, "output" if not os.path.exists(output_dir): os.makedirs(output_dir) while os.path.exists(os.path.join(output_dir, f"titan_{i}.png")): i += 1 image_data = base64.b64decode(base64_image_data) image_path = os.path.join(output_dir, f"titan_{i}.png") with open(image_path, "wb") as file: file.write(image_data) print(f"The generated image has been saved to {image_path}")

The following examples use the Amazon Titan Text Embeddings V2 model to generate binary embeddings for a text input. Choose the tab for your preferred method, and then follow the steps:

CLI

Run the following command in a terminal and find the generated response in a file called invoke-model-output.txt. The resulting embeddings are in the binary field.

aws bedrock-runtime invoke-model \ --model-id amazon.titan-embed-text-v2:0 \ --body '{ "inputText": "What are the different services that you offer?", "embeddingTypes": ["binary"] }' \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
Python

Run the following Python code example to generate embeddings for the provided text:

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to generate an embedding with the Amazon Titan Text Embeddings V2 Model """ import json import logging import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_embedding(model_id, body): """ Generate an embedding with the vector representation of a text input using Amazon Titan Text Embeddings G1 on demand. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (JSON): The embedding created by the model and the number of input tokens. """ logger.info("Generating an embedding with Amazon Titan Text Embeddings V2 model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get('body').read()) return response_body def main(): """ Entrypoint for Amazon Titan Embeddings V2 - Text example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = "amazon.titan-embed-text-v2:0" input_text = "What are the different services that you offer?" # Create request body. body = json.dumps({ "inputText": input_text, "embeddingTypes": ["binary"] }) try: response = generate_embedding(model_id, body) print(f"Generated an embedding: {response['embeddingsByType']['binary']}") # returns binary embedding print(f"Input text: {input_text}") print(f"Input Token count: {response['inputTextTokenCount']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) else: print(f"Finished generating an embedding with Amazon Titan Text Embeddings V2 model {model_id}.") if __name__ == "__main__": main()

The following examples use the Amazon Titan Text Embeddings V2 model to generate binary embeddings for a text input. Choose the tab for your preferred method, and then follow the steps:

CLI

Run the following command in a terminal and find the generated response in a file called invoke-model-output.txt. The resulting embeddings are in the binary field.

aws bedrock-runtime invoke-model \ --model-id amazon.titan-embed-text-v2:0 \ --body '{ "inputText": "What are the different services that you offer?", "embeddingTypes": ["binary"] }' \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
Python

Run the following Python code example to generate embeddings for the provided text:

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to generate an embedding with the Amazon Titan Text Embeddings V2 Model """ import json import logging import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_embedding(model_id, body): """ Generate an embedding with the vector representation of a text input using Amazon Titan Text Embeddings G1 on demand. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (JSON): The embedding created by the model and the number of input tokens. """ logger.info("Generating an embedding with Amazon Titan Text Embeddings V2 model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get('body').read()) return response_body def main(): """ Entrypoint for Amazon Titan Embeddings V2 - Text example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = "amazon.titan-embed-text-v2:0" input_text = "What are the different services that you offer?" # Create request body. body = json.dumps({ "inputText": input_text, "embeddingTypes": ["binary"] }) try: response = generate_embedding(model_id, body) print(f"Generated an embedding: {response['embeddingsByType']['binary']}") # returns binary embedding print(f"Input text: {input_text}") print(f"Input Token count: {response['inputTextTokenCount']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) else: print(f"Finished generating an embedding with Amazon Titan Text Embeddings V2 model {model_id}.") if __name__ == "__main__": main()

The following examples use the Amazon Titan Multimodal Embeddings G1 model to generate embeddings for an image input. Choose the tab for your preferred method, and then follow the steps:

CLI

Open a terminal and do the following:

  1. Convert an image titled image.png in your current folder into a base64-encoded string and write it to a file titled image.txt by running the following command:

    base64 -i image.png -o image.txt
  2. Create a JSON file called image-input-embeddings-output.json and paste the following JSON, replacing ${image-base64} with the contents of the image.txt file (make sure there is no new line at the end of the string):

    { "inputImage": "${image-base64}", "embeddingConfig": { "outputEmbeddingLength": 256 } }
  3. Run the following command, specifying the image-input-embeddings-output.json file as the body.

    aws bedrock-runtime invoke-model \ --model-id amazon.titan-embed-image-v1 \ --body file://image-input-embeddings-output.json \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
  4. Find the resulting embeddings in the invoke-model-output.txt file.

Python

In the following Python script, replace /path/to/image with the path to an actual image. Then run the script to generate embeddings:

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to generate embeddings from an image with the Amazon Titan Multimodal Embeddings G1 model (on demand). """ import base64 import json import logging import boto3 from botocore.exceptions import ClientError class EmbedError(Exception): "Custom exception for errors returned by Amazon Titan Multimodal Embeddings G1" def __init__(self, message): self.message = message logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_embeddings(model_id, body): """ Generate a vector of embeddings for an image input using Amazon Titan Multimodal Embeddings G1 on demand. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (JSON): The embeddings that the model generated, token information, and the reason the model stopped generating embeddings. """ logger.info("Generating embeddings with Amazon Titan Multimodal Embeddings G1 model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get('body').read()) finish_reason = response_body.get("message") if finish_reason is not None: raise EmbedError(f"Embeddings generation error: {finish_reason}") return response_body def main(): """ Entrypoint for Amazon Titan Multimodal Embeddings G1 example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") # Read image from file and encode it as base64 string. with open("/path/to/image", "rb") as image_file: input_image = base64.b64encode(image_file.read()).decode('utf8') model_id = 'amazon.titan-embed-image-v1' output_embedding_length = 256 # Create request body. body = json.dumps({ "inputImage": input_image, "embeddingConfig": { "outputEmbeddingLength": output_embedding_length } }) try: response = generate_embeddings(model_id, body) print(f"Generated image embeddings of length {output_embedding_length}: {response['embedding']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) except EmbedError as err: logger.error(err.message) print(err.message) else: print(f"Finished generating image embeddings with Amazon Titan Multimodal Embeddings G1 model {model_id}.") if __name__ == "__main__": main()

The following examples use the Amazon Titan Multimodal Embeddings G1 model to generate embeddings for an image input. Choose the tab for your preferred method, and then follow the steps:

CLI

Open a terminal and do the following:

  1. Convert an image titled image.png in your current folder into a base64-encoded string and write it to a file titled image.txt by running the following command:

    base64 -i image.png -o image.txt
  2. Create a JSON file called image-input-embeddings-output.json and paste the following JSON, replacing ${image-base64} with the contents of the image.txt file (make sure there is no new line at the end of the string):

    { "inputImage": "${image-base64}", "embeddingConfig": { "outputEmbeddingLength": 256 } }
  3. Run the following command, specifying the image-input-embeddings-output.json file as the body.

    aws bedrock-runtime invoke-model \ --model-id amazon.titan-embed-image-v1 \ --body file://image-input-embeddings-output.json \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
  4. Find the resulting embeddings in the invoke-model-output.txt file.

Python

In the following Python script, replace /path/to/image with the path to an actual image. Then run the script to generate embeddings:

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to generate embeddings from an image with the Amazon Titan Multimodal Embeddings G1 model (on demand). """ import base64 import json import logging import boto3 from botocore.exceptions import ClientError class EmbedError(Exception): "Custom exception for errors returned by Amazon Titan Multimodal Embeddings G1" def __init__(self, message): self.message = message logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def generate_embeddings(model_id, body): """ Generate a vector of embeddings for an image input using Amazon Titan Multimodal Embeddings G1 on demand. Args: model_id (str): The model ID to use. body (str) : The request body to use. Returns: response (JSON): The embeddings that the model generated, token information, and the reason the model stopped generating embeddings. """ logger.info("Generating embeddings with Amazon Titan Multimodal Embeddings G1 model %s", model_id) bedrock = boto3.client(service_name='bedrock-runtime') accept = "application/json" content_type = "application/json" response = bedrock.invoke_model( body=body, modelId=model_id, accept=accept, contentType=content_type ) response_body = json.loads(response.get('body').read()) finish_reason = response_body.get("message") if finish_reason is not None: raise EmbedError(f"Embeddings generation error: {finish_reason}") return response_body def main(): """ Entrypoint for Amazon Titan Multimodal Embeddings G1 example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") # Read image from file and encode it as base64 string. with open("/path/to/image", "rb") as image_file: input_image = base64.b64encode(image_file.read()).decode('utf8') model_id = 'amazon.titan-embed-image-v1' output_embedding_length = 256 # Create request body. body = json.dumps({ "inputImage": input_image, "embeddingConfig": { "outputEmbeddingLength": output_embedding_length } }) try: response = generate_embeddings(model_id, body) print(f"Generated image embeddings of length {output_embedding_length}: {response['embedding']}") except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) except EmbedError as err: logger.error(err.message) print(err.message) else: print(f"Finished generating image embeddings with Amazon Titan Multimodal Embeddings G1 model {model_id}.") if __name__ == "__main__": main()

Choose the tab for your preferred method, and then follow the steps:

CLI

The following example uses the Anthropic Claude 3 Haiku model to generate a response, given an image and a text prompt that asks the contents of the image. Open a terminal and do the following:

  1. Convert an image titled image.png in your current folder into a base64-encoded string and write it to a file titled image.txt by running the following command:

    base64 -i image.png -o image.txt
  2. Create a JSON file called image-text-input.json and paste the following JSON, replacing ${image-base64} with the contents of the image.txt file (make sure there is no new line at the end of the string):

    { "anthropic_version": "bedrock-2023-05-31", "max_tokens": 1000, "messages": [ { "role": "user", "content": [ { "type": "image", "source": { "type": "base64", "media_type": "image/png", "data": "${image-base64}" } }, { "type": "text", "text": "What's in this image?" } ] } ] }
  3. Run the following command to generate a text output, based on the image and the accompanying text prompt, to a file called invoke-model-output.txt:

    aws bedrock-runtime invoke-model \ --model-id anthropic.claude-3-haiku-20240307-v1:0 \ --body file://image-text-input.json \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
  4. Find the output in the invoke-model-output.txt file in the current folder.

Python

In the following python script, replace /path/to/image.png with the actual path to the image before running the script:

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to run a multimodal prompt with Anthropic Claude (on demand) and InvokeModel. """ import json import logging import base64 import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def run_multi_modal_prompt(bedrock_runtime, model_id, messages, max_tokens): """ Invokes a model with a multimodal prompt. Args: bedrock_runtime: The Amazon Bedrock boto3 client. model_id (str): The model ID to use. messages (JSON) : The messages to send to the model. max_tokens (int) : The maximum number of tokens to generate. Returns: None. """ body = json.dumps( { "anthropic_version": "bedrock-2023-05-31", "max_tokens": max_tokens, "messages": messages } ) response = bedrock_runtime.invoke_model( body=body, modelId=model_id) response_body = json.loads(response.get('body').read()) return response_body def main(): """ Entrypoint for Anthropic Claude multimodal prompt example. """ try: bedrock_runtime = boto3.client(service_name='bedrock-runtime') model_id = 'anthropic.claude-3-sonnet-20240229-v1:0' max_tokens = 1000 input_text = "What's in this image?" input_image = "/path/to/image" # Replace with actual path to image file # Read reference image from file and encode as base64 strings. image_ext = input_image.split(".")[-1] with open(input_image, "rb") as image_file: content_image = base64.b64encode(image_file.read()).decode('utf8') message = { "role": "user", "content": [ { "type": "image", "source": { "type": "base64", "media_type": f"image/{image_ext}", "data": content_image } }, { "type": "text", "text": input_text } ] } messages = [message] response = run_multi_modal_prompt( bedrock_runtime, model_id, messages, max_tokens) print(json.dumps(response, indent=4)) except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) if __name__ == "__main__": main()

Choose the tab for your preferred method, and then follow the steps:

CLI

The following example uses the Anthropic Claude 3 Haiku model to generate a response, given an image and a text prompt that asks the contents of the image. Open a terminal and do the following:

  1. Convert an image titled image.png in your current folder into a base64-encoded string and write it to a file titled image.txt by running the following command:

    base64 -i image.png -o image.txt
  2. Create a JSON file called image-text-input.json and paste the following JSON, replacing ${image-base64} with the contents of the image.txt file (make sure there is no new line at the end of the string):

    { "anthropic_version": "bedrock-2023-05-31", "max_tokens": 1000, "messages": [ { "role": "user", "content": [ { "type": "image", "source": { "type": "base64", "media_type": "image/png", "data": "${image-base64}" } }, { "type": "text", "text": "What's in this image?" } ] } ] }
  3. Run the following command to generate a text output, based on the image and the accompanying text prompt, to a file called invoke-model-output.txt:

    aws bedrock-runtime invoke-model \ --model-id anthropic.claude-3-haiku-20240307-v1:0 \ --body file://image-text-input.json \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
  4. Find the output in the invoke-model-output.txt file in the current folder.

Python

In the following python script, replace /path/to/image.png with the actual path to the image before running the script:

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to run a multimodal prompt with Anthropic Claude (on demand) and InvokeModel. """ import json import logging import base64 import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def run_multi_modal_prompt(bedrock_runtime, model_id, messages, max_tokens): """ Invokes a model with a multimodal prompt. Args: bedrock_runtime: The Amazon Bedrock boto3 client. model_id (str): The model ID to use. messages (JSON) : The messages to send to the model. max_tokens (int) : The maximum number of tokens to generate. Returns: None. """ body = json.dumps( { "anthropic_version": "bedrock-2023-05-31", "max_tokens": max_tokens, "messages": messages } ) response = bedrock_runtime.invoke_model( body=body, modelId=model_id) response_body = json.loads(response.get('body').read()) return response_body def main(): """ Entrypoint for Anthropic Claude multimodal prompt example. """ try: bedrock_runtime = boto3.client(service_name='bedrock-runtime') model_id = 'anthropic.claude-3-sonnet-20240229-v1:0' max_tokens = 1000 input_text = "What's in this image?" input_image = "/path/to/image" # Replace with actual path to image file # Read reference image from file and encode as base64 strings. image_ext = input_image.split(".")[-1] with open(input_image, "rb") as image_file: content_image = base64.b64encode(image_file.read()).decode('utf8') message = { "role": "user", "content": [ { "type": "image", "source": { "type": "base64", "media_type": f"image/{image_ext}", "data": content_image } }, { "type": "text", "text": input_text } ] } messages = [message] response = run_multi_modal_prompt( bedrock_runtime, model_id, messages, max_tokens) print(json.dumps(response, indent=4)) except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) if __name__ == "__main__": main()

The following examples show how to generate a response with the Amazon Nova Lite model, given a video you upload to an S3 bucket and an accompanying text prompt.

Prerequisite: Upload a video titled video.mp4 to an Amazon S3 bucket in your account by following the steps at Uploading objects in the Amazon Simple Storage Service User Guide. Take note of the S3 URI of the video.

Choose the tab for your preferred method, and then follow the steps:

CLI

Open a terminal and run the following command, replacing s3://amzn-s3-demo-bucket/video.mp4 with the actual S3 location of your video:

aws bedrock-runtime invoke-model \ --model-id amazon.nova-lite-v1:0 \ --body '{ "messages": [ { "role": "user", "content": [ { "video": { "format": "mp4", "source": { "s3Location": { "uri": "s3://amzn-s3-demo-bucket/video.mp4" } } } }, { "text": "What happens in this video?" } ] } ] }' \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt

Find the output in the invoke-model-output.txt file in the current folder.

Python

In the following Python script, replace s3://amzn-s3-demo-bucket/video.mp4 with the actual S3 location of your video. Then run the script:

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to run a multimodal prompt with Nova Lite (on demand) and InvokeModel. """ import json import logging import base64 import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def run_multi_modal_prompt(bedrock_runtime, model_id, messages, max_tokens): """ Invokes a model with a multimodal prompt. Args: bedrock_runtime: The Amazon Bedrock boto3 client. model_id (str): The model ID to use. messages (JSON) : The messages to send to the model. max_tokens (int) : The maximum number of tokens to generate. Returns: None. """ body = json.dumps( { "messages": messages, "inferenceConfig": { "maxTokens": max_tokens } } ) response = bedrock_runtime.invoke_model( body=body, modelId=model_id) response_body = json.loads(response.get('body').read()) return response_body def main(): """ Entrypoint for Nova Lite video prompt example. """ try: bedrock_runtime = boto3.client(service_name='bedrock-runtime') model_id = "amazon.nova-lite-v1:0" max_tokens = 1000 input_video_s3_uri = "s3://amzn-s3-demo-bucket/video.mp4" # Replace with real S3 URI video_ext = input_video_s3_uri.split(".")[-1] input_text = "What happens in this video?" message = { "role": "user", "content": [ { "video": { "format": video_ext, "source": { "s3Location": { "uri": input_video_s3_uri } } } }, { "text": input_text } ] } messages = [message] response = run_multi_modal_prompt( bedrock_runtime, model_id, messages, max_tokens) print(json.dumps(response, indent=4)) except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) if __name__ == "__main__": main()

The following examples show how to generate a response with the Amazon Nova Lite model, given a video you upload to an S3 bucket and an accompanying text prompt.

Prerequisite: Upload a video titled video.mp4 to an Amazon S3 bucket in your account by following the steps at Uploading objects in the Amazon Simple Storage Service User Guide. Take note of the S3 URI of the video.

Choose the tab for your preferred method, and then follow the steps:

CLI

Open a terminal and run the following command, replacing s3://amzn-s3-demo-bucket/video.mp4 with the actual S3 location of your video:

aws bedrock-runtime invoke-model \ --model-id amazon.nova-lite-v1:0 \ --body '{ "messages": [ { "role": "user", "content": [ { "video": { "format": "mp4", "source": { "s3Location": { "uri": "s3://amzn-s3-demo-bucket/video.mp4" } } } }, { "text": "What happens in this video?" } ] } ] }' \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt

Find the output in the invoke-model-output.txt file in the current folder.

Python

In the following Python script, replace s3://amzn-s3-demo-bucket/video.mp4 with the actual S3 location of your video. Then run the script:

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to run a multimodal prompt with Nova Lite (on demand) and InvokeModel. """ import json import logging import base64 import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def run_multi_modal_prompt(bedrock_runtime, model_id, messages, max_tokens): """ Invokes a model with a multimodal prompt. Args: bedrock_runtime: The Amazon Bedrock boto3 client. model_id (str): The model ID to use. messages (JSON) : The messages to send to the model. max_tokens (int) : The maximum number of tokens to generate. Returns: None. """ body = json.dumps( { "messages": messages, "inferenceConfig": { "maxTokens": max_tokens } } ) response = bedrock_runtime.invoke_model( body=body, modelId=model_id) response_body = json.loads(response.get('body').read()) return response_body def main(): """ Entrypoint for Nova Lite video prompt example. """ try: bedrock_runtime = boto3.client(service_name='bedrock-runtime') model_id = "amazon.nova-lite-v1:0" max_tokens = 1000 input_video_s3_uri = "s3://amzn-s3-demo-bucket/video.mp4" # Replace with real S3 URI video_ext = input_video_s3_uri.split(".")[-1] input_text = "What happens in this video?" message = { "role": "user", "content": [ { "video": { "format": video_ext, "source": { "s3Location": { "uri": input_video_s3_uri } } } }, { "text": input_text } ] } messages = [message] response = run_multi_modal_prompt( bedrock_runtime, model_id, messages, max_tokens) print(json.dumps(response, indent=4)) except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) if __name__ == "__main__": main()

The following examples show how to generate a response with the Amazon Nova Lite model, given a video converted to a base64-encoded string and an accompanying text prompt. Choose the tab for your preferred method, and then follow the steps:

CLI

Do the following:

  1. Convert a video titled video.mp4 in your current folder into base64 by running the following command:

    base64 -i video.mp4 -o video.txt
  2. Create a JSON file called video-text-input.json and paste the following JSON, replacing ${video-base64} with the contents of the video.txt file (make sure there is no new line at the end):

    { "messages": [ { "role": "user", "content": [ { "video": { "format": "mp4", "source": { "bytes": ${video-base64} } } }, { "text": "What happens in this video?" } ] } ] }
  3. Run the following command to generate a text output based on the video and the accompanying text prompt to a file called invoke-model-output.txt:

    aws bedrock-runtime invoke-model \ --model-id amazon.nova-lite-v1:0 \ --body file://video-text-input.json \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
  4. Find the output in the invoke-model-output.txt file in the current folder.

Python

In the following Python script, replace /path/to/video.mp4 with the actual path to the video. Then run the script:

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to run a multimodal prompt with Nova Lite (on demand) and InvokeModel. """ import json import logging import base64 import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def run_multi_modal_prompt(bedrock_runtime, model_id, messages, max_tokens): """ Invokes a model with a multimodal prompt. Args: bedrock_runtime: The Amazon Bedrock boto3 client. model_id (str): The model ID to use. messages (JSON) : The messages to send to the model. max_tokens (int) : The maximum number of tokens to generate. Returns: None. """ body = json.dumps( { "messages": messages, "inferenceConfig": { "maxTokens": max_tokens } } ) response = bedrock_runtime.invoke_model( body=body, modelId=model_id) response_body = json.loads(response.get('body').read()) return response_body def main(): """ Entrypoint for Nova Lite video prompt example. """ try: bedrock_runtime = boto3.client(service_name='bedrock-runtime') model_id = "amazon.nova-lite-v1:0" max_tokens = 1000 input_video = "/path/to/video.mp4" # Replace with real path to video video_ext = input_video.split(".")[-1] input_text = "What happens in this video?" # Read reference video from file and encode as base64 string. with open(input_video, "rb") as video_file: content_video = base64.b64encode(video_file.read()).decode('utf8')\ message = { "role": "user", "content": [ { "video": { "format": video_ext, "source": { "bytes": content_video } } }, { "text": input_text } ] } messages = [message] response = run_multi_modal_prompt( bedrock_runtime, model_id, messages, max_tokens) print(json.dumps(response, indent=4)) except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) if __name__ == "__main__": main()

The following examples show how to generate a response with the Amazon Nova Lite model, given a video converted to a base64-encoded string and an accompanying text prompt. Choose the tab for your preferred method, and then follow the steps:

CLI

Do the following:

  1. Convert a video titled video.mp4 in your current folder into base64 by running the following command:

    base64 -i video.mp4 -o video.txt
  2. Create a JSON file called video-text-input.json and paste the following JSON, replacing ${video-base64} with the contents of the video.txt file (make sure there is no new line at the end):

    { "messages": [ { "role": "user", "content": [ { "video": { "format": "mp4", "source": { "bytes": ${video-base64} } } }, { "text": "What happens in this video?" } ] } ] }
  3. Run the following command to generate a text output based on the video and the accompanying text prompt to a file called invoke-model-output.txt:

    aws bedrock-runtime invoke-model \ --model-id amazon.nova-lite-v1:0 \ --body file://video-text-input.json \ --cli-binary-format raw-in-base64-out \ invoke-model-output.txt
  4. Find the output in the invoke-model-output.txt file in the current folder.

Python

In the following Python script, replace /path/to/video.mp4 with the actual path to the video. Then run the script:

# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to run a multimodal prompt with Nova Lite (on demand) and InvokeModel. """ import json import logging import base64 import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def run_multi_modal_prompt(bedrock_runtime, model_id, messages, max_tokens): """ Invokes a model with a multimodal prompt. Args: bedrock_runtime: The Amazon Bedrock boto3 client. model_id (str): The model ID to use. messages (JSON) : The messages to send to the model. max_tokens (int) : The maximum number of tokens to generate. Returns: None. """ body = json.dumps( { "messages": messages, "inferenceConfig": { "maxTokens": max_tokens } } ) response = bedrock_runtime.invoke_model( body=body, modelId=model_id) response_body = json.loads(response.get('body').read()) return response_body def main(): """ Entrypoint for Nova Lite video prompt example. """ try: bedrock_runtime = boto3.client(service_name='bedrock-runtime') model_id = "amazon.nova-lite-v1:0" max_tokens = 1000 input_video = "/path/to/video.mp4" # Replace with real path to video video_ext = input_video.split(".")[-1] input_text = "What happens in this video?" # Read reference video from file and encode as base64 string. with open(input_video, "rb") as video_file: content_video = base64.b64encode(video_file.read()).decode('utf8')\ message = { "role": "user", "content": [ { "video": { "format": video_ext, "source": { "bytes": content_video } } }, { "text": input_text } ] } messages = [message] response = run_multi_modal_prompt( bedrock_runtime, model_id, messages, max_tokens) print(json.dumps(response, indent=4)) except ClientError as err: message = err.response["Error"]["Message"] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) if __name__ == "__main__": main()

Invoke model with streaming code example

Note

The AWS CLI does not support streaming.

The following example shows how to use the InvokeModelWithResponseStream API to generate streaming text with Python using the prompt write an essay for living on mars in 1000 words.

import boto3 import json brt = boto3.client(service_name='bedrock-runtime') body = json.dumps({ 'prompt': '\n\nHuman: write an essay for living on mars in 1000 words\n\nAssistant:', 'max_tokens_to_sample': 4000 }) response = brt.invoke_model_with_response_stream( modelId='anthropic.claude-v2', body=body ) stream = response.get('body') if stream: for event in stream: chunk = event.get('chunk') if chunk: print(json.loads(chunk.get('bytes').decode()))
PrivacySite termsCookie preferences
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.