Cookie の設定を選択する

当社は、当社のサイトおよびサービスを提供するために必要な必須 Cookie および類似のツールを使用しています。当社は、パフォーマンス Cookie を使用して匿名の統計情報を収集することで、お客様が当社のサイトをどのように利用しているかを把握し、改善に役立てています。必須 Cookie は無効化できませんが、[カスタマイズ] または [拒否] をクリックしてパフォーマンス Cookie を拒否することはできます。

お客様が同意した場合、AWS および承認された第三者は、Cookie を使用して便利なサイト機能を提供したり、お客様の選択を記憶したり、関連する広告を含む関連コンテンツを表示したりします。すべての必須ではない Cookie を受け入れるか拒否するには、[受け入れる] または [拒否] をクリックしてください。より詳細な選択を行うには、[カスタマイズ] をクリックしてください。

Understanding the inference process

フォーカスモード
Understanding the inference process - Amazon Lookout for Equipment
このページはお客様の言語に翻訳されていません。 翻訳のリクエスト

Amazon Lookout for Equipment is no longer open to new customers. Existing customers can continue to use the service as normal. For capabilities similar to Amazon Lookout for Equipment see our blog post.

Amazon Lookout for Equipment is no longer open to new customers. Existing customers can continue to use the service as normal. For capabilities similar to Amazon Lookout for Equipment see our blog post.

When you're planning your use of Lookout for Equipment, it may be useful to understand exactly what happens at each step of the inference process.

Understanding inference scheduling windows

  • When you schedule inference, you may set your data upload frequency time to any of the following values, in minutes: 5, 10, 15, 30, 60.

  • Lookout for Equipment then calculates the base number of segments per hour by dividing 60 by the length of your segments.

  • You may also set an offset window in increments of minutes, from 0 to 60.

  • At the beginning of each segment, Lookout for Equipment waits for the offset window to close before running inference.

  • At the top of the hour, the process begins again.

Inference interval Inferences per hour First inference after 09:00 (with no offset) First inference after 09:00 (with a 5-minute offset)

5

12

09:05

09:10

10

6

09:10

09:15

15

4

09:15

09:20

30

2

09:30

09:35

60

1

10:00

10:05

The inference process

Inference steps
  1. Lookout for Equipment looks for the component name (which can be the name of an asset or a sensor, depending on how your data was ingested).

  2. Once the component name is found in the file name, Lookout for Equipment looks at the time stamp in the CSV file name.

  3. The timestamp in the file name must be within the range of time that your scheduler is running. For example, if the scheduler is running every 5 minutes, then at 9:05, Lookout for Equipment will look for any files that have a timestamp from 9:00 to 9:05. Any files with timestamps outside this range will be ignored for the inference run.

  4. Lookout for Equipment automatically ingests the files with the right component name, and within the right time range.

  5. Lookout for Equipment opens the CSV file and runs inference on any rows in the CSV file with timestamps that fit within the scheduler window. For example, if the scheduler is running every 5 minutes, and the current time is 9:05, then Lookout for Equipment will grab any files with the timestamp in the file name from 9:00 to 9:05, and will then run inference on any rows in the CSV with timestamps between 9:00 to 9:05.

  6. The inference results are placed into your designated output bucket in a JSON file.

  7. The steps above are repeated in perpetuity until the scheduler is turned off.

このページの内容

プライバシーサイト規約Cookie の設定
© 2025, Amazon Web Services, Inc. or its affiliates.All rights reserved.