Cookie の設定を選択する

当社は、当社のサイトおよびサービスを提供するために必要な必須 Cookie および類似のツールを使用しています。当社は、パフォーマンス Cookie を使用して匿名の統計情報を収集することで、お客様が当社のサイトをどのように利用しているかを把握し、改善に役立てています。必須 Cookie は無効化できませんが、[カスタマイズ] または [拒否] をクリックしてパフォーマンス Cookie を拒否することはできます。

お客様が同意した場合、AWS および承認された第三者は、Cookie を使用して便利なサイト機能を提供したり、お客様の選択を記憶したり、関連する広告を含む関連コンテンツを表示したりします。すべての必須ではない Cookie を受け入れるか拒否するには、[受け入れる] または [拒否] をクリックしてください。より詳細な選択を行うには、[カスタマイズ] をクリックしてください。

モデル品質メトリクスと Amazon CloudWatch モニタリング

フォーカスモード
モデル品質メトリクスと Amazon CloudWatch モニタリング - Amazon SageMaker AI

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。

モデル品質モニタリングジョブは、機械学習モデルの品質とパフォーマンスを評価するためにさまざまなメトリクスを計算します。計算される特定のメトリクスは、リグレッション、二項分類、または多クラス分類などの ML 問題のタイプによって異なります。このようなメトリクスのモニタリングは、経時的なモデルのドリフトを検出するうえで重要です。以降のセクションでは、問題タイプごとの主要なモデルの質メトリクスと、CloudWatch を使用して自動モニタリングとアラートを設定し、モデルのパフォーマンスを継続的に追跡する方法について説明します。

注記

メトリクスの標準偏差は、200 件以上のサンプルを使用できる場合にのみ得ることができます。Model Monitor は、データの 80% をランダムに 5 回サンプリングしてメトリクスを計算し、これらの結果の標準偏差を取得することで、標準偏差を計算します。

リグレッションメトリクス

以下は、回帰問題においてモデル品質モニタリングが計算するメトリクスの例を示しています。

"regression_metrics" : { "mae" : { "value" : 0.3711832061068702, "standard_deviation" : 0.0037566388129940394 }, "mse" : { "value" : 0.3711832061068702, "standard_deviation" : 0.0037566388129940524 }, "rmse" : { "value" : 0.609248066149471, "standard_deviation" : 0.003079253267651125 }, "r2" : { "value" : -1.3766111872212665, "standard_deviation" : 0.022653980022771227 } }

二項分類メトリクス

以下は、バイナリ分類問題においてモデル品質モニタリングが計算するメトリクスの例を示しています。

"binary_classification_metrics" : { "confusion_matrix" : { "0" : { "0" : 1, "1" : 2 }, "1" : { "0" : 0, "1" : 1 } }, "recall" : { "value" : 1.0, "standard_deviation" : "NaN" }, "precision" : { "value" : 0.3333333333333333, "standard_deviation" : "NaN" }, "accuracy" : { "value" : 0.5, "standard_deviation" : "NaN" }, "recall_best_constant_classifier" : { "value" : 1.0, "standard_deviation" : "NaN" }, "precision_best_constant_classifier" : { "value" : 0.25, "standard_deviation" : "NaN" }, "accuracy_best_constant_classifier" : { "value" : 0.25, "standard_deviation" : "NaN" }, "true_positive_rate" : { "value" : 1.0, "standard_deviation" : "NaN" }, "true_negative_rate" : { "value" : 0.33333333333333337, "standard_deviation" : "NaN" }, "false_positive_rate" : { "value" : 0.6666666666666666, "standard_deviation" : "NaN" }, "false_negative_rate" : { "value" : 0.0, "standard_deviation" : "NaN" }, "receiver_operating_characteristic_curve" : { "false_positive_rates" : [ 0.0, 0.0, 0.0, 0.0, 0.0, 1.0 ], "true_positive_rates" : [ 0.0, 0.25, 0.5, 0.75, 1.0, 1.0 ] }, "precision_recall_curve" : { "precisions" : [ 1.0, 1.0, 1.0, 1.0, 1.0 ], "recalls" : [ 0.0, 0.25, 0.5, 0.75, 1.0 ] }, "auc" : { "value" : 1.0, "standard_deviation" : "NaN" }, "f0_5" : { "value" : 0.3846153846153846, "standard_deviation" : "NaN" }, "f1" : { "value" : 0.5, "standard_deviation" : "NaN" }, "f2" : { "value" : 0.7142857142857143, "standard_deviation" : "NaN" }, "f0_5_best_constant_classifier" : { "value" : 0.29411764705882354, "standard_deviation" : "NaN" }, "f1_best_constant_classifier" : { "value" : 0.4, "standard_deviation" : "NaN" }, "f2_best_constant_classifier" : { "value" : 0.625, "standard_deviation" : "NaN" } }

多クラスメトリクス

以下は、複数クラス分類問題においてモデル品質モニタリングが計算するメトリクスの例を示しています。

"multiclass_classification_metrics" : { "confusion_matrix" : { "0" : { "0" : 1180, "1" : 510 }, "1" : { "0" : 268, "1" : 138 } }, "accuracy" : { "value" : 0.6288167938931297, "standard_deviation" : 0.00375663881299405 }, "weighted_recall" : { "value" : 0.6288167938931297, "standard_deviation" : 0.003756638812994008 }, "weighted_precision" : { "value" : 0.6983172269629505, "standard_deviation" : 0.006195912915307507 }, "weighted_f0_5" : { "value" : 0.6803947317178771, "standard_deviation" : 0.005328406973561699 }, "weighted_f1" : { "value" : 0.6571162346664904, "standard_deviation" : 0.004385008075019733 }, "weighted_f2" : { "value" : 0.6384024354394601, "standard_deviation" : 0.003867109755267757 }, "accuracy_best_constant_classifier" : { "value" : 0.19370229007633588, "standard_deviation" : 0.0032049848450732355 }, "weighted_recall_best_constant_classifier" : { "value" : 0.19370229007633588, "standard_deviation" : 0.0032049848450732355 }, "weighted_precision_best_constant_classifier" : { "value" : 0.03752057718081697, "standard_deviation" : 0.001241536088657851 }, "weighted_f0_5_best_constant_classifier" : { "value" : 0.04473443104152011, "standard_deviation" : 0.0014460485504284792 }, "weighted_f1_best_constant_classifier" : { "value" : 0.06286421244683643, "standard_deviation" : 0.0019113576884608862 }, "weighted_f2_best_constant_classifier" : { "value" : 0.10570313141262414, "standard_deviation" : 0.002734216826748117 } }

CloudWatch メトリクスを使用したモデルの質モニタリング

モニタリングスケジュールを作成する際、enable_cloudwatch_metrics の値を True に設定すると、モデルの質モニタリングジョブはすべてのメトリクスを CloudWatch に送信します。

モデル品質メトリクスは、次の名前空間に表示されます。

  • リアルタイムエンドポイントの場合: aws/sagemaker/Endpoints/model-metrics

  • バッチ変換ジョブの場合: aws/sagemaker/ModelMonitoring/model-metrics

出力されるメトリクスのリストについては、このページの前のセクションを参照してください。

CloudWatch メトリクスを使用して、指定したしきい値を特定のメトリクスが満たさない場合のアラームを作成できます。CloudWatch アラームを作成する手順については、「CloudWatch ユーザーガイド」の「静的しきい値に基づいて CloudWatch アラームを作成する」を参照してください。

プライバシーサイト規約Cookie の設定
© 2025, Amazon Web Services, Inc. or its affiliates.All rights reserved.