쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

Creating a new Neptune Analytics notebook using the AWS Management Console

포커스 모드
Creating a new Neptune Analytics notebook using the AWS Management Console - Neptune Analytics
이 페이지는 귀하의 언어로 번역되지 않았습니다. 번역 요청

You can create a new notebook manually using the AWS Management Console if you aren't able to use AWS CloudFormation. The first thing you need is an IAM role to use for the notebook. If you already have one, you can skip the following section.

Create an IAM role for a Neptune Analytics notebook

To create an IAM role for a Neptune Analytics notebook
  1. Sign in to the AWS Management Console and open the IAM console at https://console.aws.amazon.com/iam/.

  2. In the navigation pane, expand Access management, then choose Roles.

  3. Select Create role.

  4. Under Trusted entity type, select Custom trust policy and copy in the following trust policy:

    { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": { "Service": "sagemaker.amazonaws.com" }, "Action": "sts:AssumeRole" } ] }
  5. Choose Next, and then Next again.

  6. Enter a name and description for the role, and select Create role.

  7. Go back to the Roles page, search for the name of the role you just created, and open it.

  8. On the Permissions tab Under Permissions policies, select Add permissions and choose Create inline policy.

  9. In the Policy editor, switch to the JSON option, and copy in the following policy:

    { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "s3:GetObject", "s3:ListBucket" ], "Resource": [ "arn:aws:s3:::aws-neptune-notebook-(AWS region)", "arn:aws:s3:::aws-neptune-notebook-(AWS region)/*", "arn:aws:s3:::aws-neptune-customer-samples-(AWS region)", "arn:aws:s3:::aws-neptune-customer-samples-(AWS region)/*" ] }, { "Effect": "Allow", "Action": "neptune-graph:*", "Resource": [ "arn:aws:neptune-graph:(AWS region):(AWS account ID):graph/(Neptune Graph resource ID)" ] }, { "Effect": "Allow", "Action": [ "logs:CreateLogGroup", "logs:CreateLogStream", "logs:PutLogEvents" ], "Resource": [ "arn:aws:logs:*:*:log-group:/aws/sagemaker/*" ] }, { "Effect": "Allow", "Action": "sagemaker:DescribeNotebookInstance", "Resource": [ "arn:aws:sagemaker:(AWS region):(AWS account ID):notebook-instance/*" ] } ] }
  10. Choose Next.

  11. Give a name to the inline policy.

  12. Select Create policy. Make note of the name of the policy you just created.

Next, create the Neptune Analytics notebook in SageMaker AI

  1. Open the Amazon SageMaker AI console at https://console.aws.amazon.com/sagemaker/.

  2. In the navigation pane, expand Notebook, then choose Notebook instances.

  3. Choose Create notebook instance.

  4. In Notebook instance settings, under Notebook instance name, give the notebook a name prefixed by aws-neptune- (for example, aws-neptune-my-test-notebook).

  5. Under Platform identifier, select Amazon Linux 2, JupyterLab 3.

  6. Select Additional configuration.

  7. Under Lifecycle configuration, choose Create a new lifecycle configuration.

  8. In Configuration, under Name enter the notebook instance name from step 4.

  9. In Scripts, under Start notebook, replace the existing script with this:

    #!/bin/bash sudo -u ec2-user -i <<'EOF' echo "export GRAPH_NOTEBOOK_AUTH_MODE=IAM" >> ~/.bashrc echo "export GRAPH_NOTEBOOK_SSL=True" >> ~/.bashrc echo "export GRAPH_NOTEBOOK_SERVICE=neptune-graph" >> ~/.bashrc echo "export GRAPH_NOTEBOOK_HOST=(Neptune Analytics graph endpoint, public or private)" >> ~/.bashrc echo "export GRAPH_NOTEBOOK_PORT=8182" >> ~/.bashrc echo "export NEPTUNE_LOAD_FROM_S3_ROLE_ARN=" >> ~/.bashrc echo "export AWS_REGION=(AWS region)" >> ~/.bashrc aws s3 cp s3://aws-neptune-notebook-(AWS region)/graph_notebook.tar.gz /tmp/graph_notebook.tar.gz rm -rf /tmp/graph_notebook tar -zxvf /tmp/graph_notebook.tar.gz -C /tmp /tmp/graph_notebook/install.sh EOF
  10. Select Create configuration.

  11. In Permissions and encryption, under IAM Role, select the role you created above.

  12. In Network, if you are using a private graph endpoint:

    1. Under VPC, select the VPC where the Neptune Analytics graph resides.

    2. Under Subnet, select a subnet associated with the Neptune Analytics graph.

    3. Under Security Group(s), select all the security groups associated with the Neptune Analytics graph.

  13. Choose Create notebook instance.

  14. After 5 or 10 minutes, when your new notebook reaches Ready status, select it. Choose Open Jupyter or Open JupyterLab.

이 페이지에서

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.