쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

HyperParameterTuningResourceConfig

포커스 모드
HyperParameterTuningResourceConfig - Amazon SageMaker
이 페이지는 귀하의 언어로 번역되지 않았습니다. 번역 요청

The configuration of resources, including compute instances and storage volumes for use in training jobs launched by hyperparameter tuning jobs. HyperParameterTuningResourceConfig is similar to ResourceConfig, but has the additional InstanceConfigs and AllocationStrategy fields to allow for flexible instance management. Specify one or more instance types, count, and the allocation strategy for instance selection.

Note

HyperParameterTuningResourceConfig supports the capabilities of ResourceConfig with the exception of KeepAlivePeriodInSeconds. Hyperparameter tuning jobs use warm pools by default, which reuse clusters between training jobs.

Contents

AllocationStrategy

The strategy that determines the order of preference for resources specified in InstanceConfigs used in hyperparameter optimization.

Type: String

Valid Values: Prioritized

Required: No

InstanceConfigs

A list containing the configuration(s) for one or more resources for processing hyperparameter jobs. These resources include compute instances and storage volumes to use in model training jobs launched by hyperparameter tuning jobs. The AllocationStrategy controls the order in which multiple configurations provided in InstanceConfigs are used.

Note

If you only want to use a single instance configuration inside the HyperParameterTuningResourceConfig API, do not provide a value for InstanceConfigs. Instead, use InstanceType, VolumeSizeInGB and InstanceCount. If you use InstanceConfigs, do not provide values for InstanceType, VolumeSizeInGB or InstanceCount.

Type: Array of HyperParameterTuningInstanceConfig objects

Array Members: Minimum number of 1 item. Maximum number of 6 items.

Required: No

InstanceCount

The number of compute instances of type InstanceType to use. For distributed training, select a value greater than 1.

Type: Integer

Valid Range: Minimum value of 0.

Required: No

InstanceType

The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.

Type: String

Valid Values: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.p4de.24xlarge | ml.p5.48xlarge | ml.p5e.48xlarge | ml.p5en.48xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.g6.xlarge | ml.g6.2xlarge | ml.g6.4xlarge | ml.g6.8xlarge | ml.g6.16xlarge | ml.g6.12xlarge | ml.g6.24xlarge | ml.g6.48xlarge | ml.g6e.xlarge | ml.g6e.2xlarge | ml.g6e.4xlarge | ml.g6e.8xlarge | ml.g6e.16xlarge | ml.g6e.12xlarge | ml.g6e.24xlarge | ml.g6e.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.trn2.48xlarge | ml.m6i.large | ml.m6i.xlarge | ml.m6i.2xlarge | ml.m6i.4xlarge | ml.m6i.8xlarge | ml.m6i.12xlarge | ml.m6i.16xlarge | ml.m6i.24xlarge | ml.m6i.32xlarge | ml.c6i.xlarge | ml.c6i.2xlarge | ml.c6i.8xlarge | ml.c6i.4xlarge | ml.c6i.12xlarge | ml.c6i.16xlarge | ml.c6i.24xlarge | ml.c6i.32xlarge | ml.r5d.large | ml.r5d.xlarge | ml.r5d.2xlarge | ml.r5d.4xlarge | ml.r5d.8xlarge | ml.r5d.12xlarge | ml.r5d.16xlarge | ml.r5d.24xlarge | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge

Required: No

VolumeKmsKeyId

A key used by AWS Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key.

KMS Key ID:

"1234abcd-12ab-34cd-56ef-1234567890ab"

Amazon Resource Name (ARN) of a KMS key:

"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Some instances use local storage, which use a hardware module to encrypt storage volumes. If you choose one of these instance types, you cannot request a VolumeKmsKeyId. For a list of instance types that use local storage, see instance store volumes. For more information about AWS Key Management Service, see KMS encryption for more information.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: ^[a-zA-Z0-9:/_-]*$

Required: No

VolumeSizeInGB

The volume size in GB for the storage volume to be used in processing hyperparameter optimization jobs (optional). These volumes store model artifacts, incremental states and optionally, scratch space for training algorithms. Do not provide a value for this parameter if a value for InstanceConfigs is also specified.

Some instance types have a fixed total local storage size. If you select one of these instances for training, VolumeSizeInGB cannot be greater than this total size. For a list of instance types with local instance storage and their sizes, see instance store volumes.

Note

SageMaker supports only the General Purpose SSD (gp2) storage volume type.

Type: Integer

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

이 페이지에서

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.