Selecione suas preferências de cookies

Usamos cookies essenciais e ferramentas semelhantes que são necessárias para fornecer nosso site e serviços. Usamos cookies de desempenho para coletar estatísticas anônimas, para que possamos entender como os clientes usam nosso site e fazer as devidas melhorias. Cookies essenciais não podem ser desativados, mas você pode clicar em “Personalizar” ou “Recusar” para recusar cookies de desempenho.

Se você concordar, a AWS e terceiros aprovados também usarão cookies para fornecer recursos úteis do site, lembrar suas preferências e exibir conteúdo relevante, incluindo publicidade relevante. Para aceitar ou recusar todos os cookies não essenciais, clique em “Aceitar” ou “Recusar”. Para fazer escolhas mais detalhadas, clique em “Personalizar”.

Creating a HealthOmics private workflow

Modo de foco
Creating a HealthOmics private workflow - AWS HealthOmics
Esta página não foi traduzida para seu idioma. Solicitar tradução

To create a private workflow, you require the following inputs:

If your workflow definition file is larger than 4 MiB (zipped), upload it to an Amazon S3 folder, and specify the Amazon S3 location when you create the workflow.

Creating a workflow using the console

To create a workflow
  1. Open the HealthOmics console https://console.aws.amazon.com/omics/.

  2. In the left navigation pane, choose Private workflows.

  3. On the Private workflows page, choose Create workflow.

  4. On the Create workflow page, provide the following information

    • Workflow name - A distinctive name for this workflow.

    • Description (optional) - A description of this workflow.

    • Default run storage capacity (optional) - The default amount of run storage required for this workflow. You can override this default when you start a workflow run. The default value for this parameter is 1.2 TB.

    • Under Workflow definition, if you choose Select definion folder from S3, enter the Amazon S3 location that contains the zipped workflow definition folder.

    • If you choose Select definion folder from a local source, enter the location of the zipped workflow definition folder.

    • For Workflow language, select the specification language of the workflow.

    • Tags (optional) - Provide up to 50 tags for this workflow.

  5. Choose Next.

  6. On the Add workflow parameters page, provide the workflow parameters. You can either upload a JSON file that specifies the parameters or manually enter your workflow parameters.

  7. Choose Next.

  8. Review the workflow configuration, then choose Create workflow.

Creating a workflow using the CLI

After you define your workflow and the parameters, you can create a workflow using the CLI as shown.

aws omics create-workflow --name my_workflow --definition-zip fileb://my-definition.zip \ --parameter-template file://my-parameter-template.json

If your workflow definition file located in an Amazon S3 folder, enter the location using the --definition-uri parameter instead of --definition-zip. For more information, see CreateWorkflow in the AWS HealthOmics API Reference.

You receive the following response to the create-workflow request.

{ "arn": "arn:aws:omics:us-west-2:....", "id": "1234567", "status": "CREATING", "tags": { "resourceArn": "arn:aws:omics:us-west-2:...." } }

Creating a workflow using an SDK

You can create a workflow using one of the SDKs.

The following example shows how to create a workflow using the Python SDK

import boto3 omics = boto3.client('omics') with open('definition.zip', 'rb') as f: definition = f.read() response = omics.create_workflow( name='my_workflow', definitionZip=definition, parameterTemplate={ ... } )

Optional parameters to use when creating a workflow

You can specify one or more optional parameters when you create a workflow. For more information, see CreateWorkflow in the AWS HealthOmics API Reference.

If you are including multiple workflow definition files, use the --main parameter to specify which file is the main definition file for your workflow.

If you uploaded your workflow definition file to an Amazon S3 folder, specify the location using the --definition-uri parameter, as shown in the following example.

aws omics create-workflow --name Test --main multi_workflow/workflow2.wdl --definition-zip fileb://definition.zip --parameter-template file://params_sample_description.json

Use the accelerators parameter to create a workflow that runs on an accelerated-compute instance. The following example shows how to use the --accelerators parameter.

aws omics create-workflow --name workflow name \ --definition-uri s3://amzn-s3-demo-bucket1/GPUWorkflow.zip \ --accelerators GPU

Referencing genome files from a workflow definition

An HealthOmics reference store object can be referred to with a URI like the following. Use your own account ID, reference store ID, and reference ID where indicated.

omics://account ID.storage.us-west-2.amazonaws.com/reference store id/reference/id

Some workflows will require both the SOURCE and INDEX files for the reference genome. The previous URI is the default short form and will default to the SOURCE file. In order to specify either file, you can use the long URI form, as follows.

omics://account ID.storage.us-west-2.amazonaws.com/reference store id/reference/id/source omics://account ID.storage.us-west-2.amazonaws.com/reference store id/reference/id/index

Using a sequence read set would have a similar pattern, as shown.

aws omics create-workflow \ --name workflow name \ --main sample workflow.wdl \ --definition-uri omics://account ID.storage.us-west-2.amazonaws.com/sequence_store_id/readSet/id \ --parameter-template file://parameters_sample_description.json

Some read sets, such as those based on FASTQ, can contain paired reads. In the following examples, they’re referred to as SOURCE1 and SOURCE2. Formats such as BAM and CRAM will only have a SOURCE1 file. Some read sets will contain INDEX files such as bai or crai files. The preceding URI is the default short form and will default to the SOURCE1 file. To specify the exact file or index, you can use the long URI form, as follows.

omics://123456789012.storage.us-west-2.amazonaws.com/<sequence_store_id>/readSet/<id>/source1 omics://123456789012.storage.us-west-2.amazonaws.com/<sequence_store_id>/readSet/<id>/source2 omics://123456789012.storage.us-west-2.amazonaws.com/<sequence_store_id>/readSet/<id>/index

The following is an example of an input JSON file that uses two Omics Storage URIs.

{ "input_fasta": "omics://123456789012.storage.us-west-2.amazonaws.com/<reference_store_id>/reference/<id>", "input_cram": "omics://123456789012.storage.us-west-2.amazonaws.com/<sequence_store_id>/readSet/<id>" }

Reference the input JSON file in the AWS CLI by adding --inputs file://<input_file.json> to your start-run request.

Verifying the status of a workflow

After you create your workflow, you can verify the status and view other details of the workflow using get-workflow, as shown.

aws omics get-workflow --id 1234567

The response gives you your workflow details, including the status, as shown.

{ "arn": "arn:aws:omics:us-west-2:....", "id": "1234567", "status": "ACTIVE", "type": "PRIVATE", "name": "workflow_name" "creationTime": "2022-07-06T00:27:05.542459" }

Before a run can be started, the status must be listed as ACTIVE.

PrivacidadeTermos do sitePreferências de cookies
© 2025, Amazon Web Services, Inc. ou suas afiliadas. Todos os direitos reservados.