Selecione suas preferências de cookies

Usamos cookies essenciais e ferramentas semelhantes que são necessárias para fornecer nosso site e serviços. Usamos cookies de desempenho para coletar estatísticas anônimas, para que possamos entender como os clientes usam nosso site e fazer as devidas melhorias. Cookies essenciais não podem ser desativados, mas você pode clicar em “Personalizar” ou “Recusar” para recusar cookies de desempenho.

Se você concordar, a AWS e terceiros aprovados também usarão cookies para fornecer recursos úteis do site, lembrar suas preferências e exibir conteúdo relevante, incluindo publicidade relevante. Para aceitar ou recusar todos os cookies não essenciais, clique em “Aceitar” ou “Recusar”. Para fazer escolhas mais detalhadas, clique em “Personalizar”.

MLOE-01: Develop the right skills with accountability and empowerment

Modo de foco
MLOE-01: Develop the right skills with accountability and empowerment - Machine Learning Lens
Esta página não foi traduzida para seu idioma. Solicitar tradução

Artificial intelligence (AI) has many different and growing branches, such as machine learning, deep learning, and computer vision. Given the complexity and fast-growing nature of ML technologies, plan to hire specialists with the understanding that additional training will be needed as ML evolves. Keep teams learning new skills, engaged, and motivated while encouraging accountability and empowerment at all times. Building ML models is a complex and iterative process that can infuse bias or unfair predictions against a certain entity. It’s important to promote and enforce the ethical use of AI across enterprises. AWS provides clear guidance to customers for responsible AI practices.

Implementation plan

Develop skills - A key element in any organization’s strategy for employee engagement and business growth must be ongoing learning and development. Consider strategies to grow your ML-driven business outcomes through intentional workforce skills development. Building a successful ML workforce includes providing training on ML concepts and algorithms, end-to-end ML lifecycle processes (such as model training, tuning, and deployment on Amazon SageMaker AI), and efficient use of ML infrastructure with SageMaker AI and automation with MLOps tools, such as SageMaker AI Pipelines. Training people in different specialty areas of ML, such as computer vision, NLP, and reinforcement learning based on your business needs, can increase productivity.

  • Develop accountability and empowerment -AI applied through ML transforms the way business is run by tackling some of humanity’s most challenging problems, augmenting human performance, and maximizing productivity. Promoting responsible use of these technologies is key to fostering continued innovation. Eliminating bias in datasets and model predictions by using Amazon SageMaker AI Clarify can help you build fair and explainable models.

Documents

Blogs

Nesta página

PrivacidadeTermos do sitePreferências de cookies
© 2025, Amazon Web Services, Inc. ou suas afiliadas. Todos os direitos reservados.