Selecione suas preferências de cookies

Usamos cookies essenciais e ferramentas semelhantes que são necessárias para fornecer nosso site e serviços. Usamos cookies de desempenho para coletar estatísticas anônimas, para que possamos entender como os clientes usam nosso site e fazer as devidas melhorias. Cookies essenciais não podem ser desativados, mas você pode clicar em “Personalizar” ou “Recusar” para recusar cookies de desempenho.

Se você concordar, a AWS e terceiros aprovados também usarão cookies para fornecer recursos úteis do site, lembrar suas preferências e exibir conteúdo relevante, incluindo publicidade relevante. Para aceitar ou recusar todos os cookies não essenciais, clique em “Aceitar” ou “Recusar”. Para fazer escolhas mais detalhadas, clique em “Personalizar”.

Well-Architected machine learning design principles - Machine Learning Lens
Esta página não foi traduzida para seu idioma. Solicitar tradução

Well-Architected machine learning design principles

Well-Architected ML design principles are a set of considerations used as the basis for a well-architected ML workload.

Following the Well-Architected Framework guidelines, use these general design principles to facilitate good design in the cloud for ML workloads:

  • Assign ownership- Apply the right skills and the right number of resources along with accountability and empowerment to increase productivity.

  • Provide protection - Apply security controls to systems and services hosting model data, algorithms, computation, and endpoints. This ensures secure and uninterrupted operations.

  • Enable resiliency - Ensure fault tolerance and the recoverability of ML models through version control, traceability, and explainability.

  • Enable reusability - Use independent modular components that can be shared and reused. This helps enable reliability, improve productivity, and optimize cost.

  • Enable reproducibility - Use version control across components, such as infrastructure, data, models, and code. Track changes back to a point-in-time release. This approach enables model governance and audit standards.

  • Optimize resources - Perform trade-off analysis across available resources and configurations to achieve optimal outcome.

  • Reduce cost - Identify the potentials for reducing cost through automation or optimization, analyzing processes, resources, and operations.

  • Enable automation - Use technologies, such as pipelining, scripting, and continuous integration (CI), continuous delivery (CD), and continuous training (CT), to increase agility, improve performance, sustain resiliency, and reduce cost.

  • Enable continuous improvement - Evolve and improve the workload through continuous monitoring, analysis, and learning.

  • Minimize environmental impact - Establish sustainability goals and understand the impact of ML models. Use managed services and adopt efficient hardware and software and maximize their utilization.

PrivacidadeTermos do sitePreferências de cookies
© 2025, Amazon Web Services, Inc. ou suas afiliadas. Todos os direitos reservados.