Class: Aws::SageMaker::Types::HyperParameterTrainingJobDefinition

Inherits:
Struct
  • Object
show all
Defined in:
gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb

Overview

Note:

When making an API call, you may pass HyperParameterTrainingJobDefinition data as a hash:

{
  definition_name: "HyperParameterTrainingJobDefinitionName",
  tuning_objective: {
    type: "Maximize", # required, accepts Maximize, Minimize
    metric_name: "MetricName", # required
  },
  hyper_parameter_ranges: {
    integer_parameter_ranges: [
      {
        name: "ParameterKey", # required
        min_value: "ParameterValue", # required
        max_value: "ParameterValue", # required
        scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
      },
    ],
    continuous_parameter_ranges: [
      {
        name: "ParameterKey", # required
        min_value: "ParameterValue", # required
        max_value: "ParameterValue", # required
        scaling_type: "Auto", # accepts Auto, Linear, Logarithmic, ReverseLogarithmic
      },
    ],
    categorical_parameter_ranges: [
      {
        name: "ParameterKey", # required
        values: ["ParameterValue"], # required
      },
    ],
  },
  static_hyper_parameters: {
    "ParameterKey" => "ParameterValue",
  },
  algorithm_specification: { # required
    training_image: "AlgorithmImage",
    training_input_mode: "Pipe", # required, accepts Pipe, File
    algorithm_name: "ArnOrName",
    metric_definitions: [
      {
        name: "MetricName", # required
        regex: "MetricRegex", # required
      },
    ],
  },
  role_arn: "RoleArn", # required
  input_data_config: [
    {
      channel_name: "ChannelName", # required
      data_source: { # required
        s3_data_source: {
          s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
          s3_uri: "S3Uri", # required
          s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
          attribute_names: ["AttributeName"],
        },
        file_system_data_source: {
          file_system_id: "FileSystemId", # required
          file_system_access_mode: "rw", # required, accepts rw, ro
          file_system_type: "EFS", # required, accepts EFS, FSxLustre
          directory_path: "DirectoryPath", # required
        },
      },
      content_type: "ContentType",
      compression_type: "None", # accepts None, Gzip
      record_wrapper_type: "None", # accepts None, RecordIO
      input_mode: "Pipe", # accepts Pipe, File
      shuffle_config: {
        seed: 1, # required
      },
    },
  ],
  vpc_config: {
    security_group_ids: ["SecurityGroupId"], # required
    subnets: ["SubnetId"], # required
  },
  output_data_config: { # required
    kms_key_id: "KmsKeyId",
    s3_output_path: "S3Uri", # required
  },
  resource_config: { # required
    instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5n.xlarge, ml.c5n.2xlarge, ml.c5n.4xlarge, ml.c5n.9xlarge, ml.c5n.18xlarge
    instance_count: 1, # required
    volume_size_in_gb: 1, # required
    volume_kms_key_id: "KmsKeyId",
  },
  stopping_condition: { # required
    max_runtime_in_seconds: 1,
    max_wait_time_in_seconds: 1,
  },
  enable_network_isolation: false,
  enable_inter_container_traffic_encryption: false,
  enable_managed_spot_training: false,
  checkpoint_config: {
    s3_uri: "S3Uri", # required
    local_path: "DirectoryPath",
  },
}

Defines the training jobs launched by a hyperparameter tuning job.

Constant Summary collapse

SENSITIVE =
[]

Instance Attribute Summary collapse

Instance Attribute Details

#algorithm_specificationTypes::HyperParameterAlgorithmSpecification

The HyperParameterAlgorithmSpecification object that specifies the resource algorithm to use for the training jobs that the tuning job launches.



10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#checkpoint_configTypes::CheckpointConfig

Contains information about the output location for managed spot training checkpoint data.



10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#definition_nameString

The job definition name.

Returns:

  • (String)


10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#enable_inter_container_traffic_encryptionBoolean

To encrypt all communications between ML compute instances in distributed training, choose True. Encryption provides greater security for distributed training, but training might take longer. How long it takes depends on the amount of communication between compute instances, especially if you use a deep learning algorithm in distributed training.

Returns:

  • (Boolean)


10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#enable_managed_spot_trainingBoolean

A Boolean indicating whether managed spot training is enabled (True) or not (False).

Returns:

  • (Boolean)


10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#enable_network_isolationBoolean

Isolates the training container. No inbound or outbound network calls can be made, except for calls between peers within a training cluster for distributed training. If network isolation is used for training jobs that are configured to use a VPC, Amazon SageMaker downloads and uploads customer data and model artifacts through the specified VPC, but the training container does not have network access.

Returns:

  • (Boolean)


10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#hyper_parameter_rangesTypes::ParameterRanges

Specifies ranges of integer, continuous, and categorical hyperparameters that a hyperparameter tuning job searches. The hyperparameter tuning job launches training jobs with hyperparameter values within these ranges to find the combination of values that result in the training job with the best performance as measured by the objective metric of the hyperparameter tuning job.

You can specify a maximum of 20 hyperparameters that a hyperparameter tuning job can search over. Every possible value of a categorical parameter range counts against this limit.



10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#input_data_configArray<Types::Channel>

An array of Channel objects that specify the input for the training jobs that the tuning job launches.

Returns:



10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#output_data_configTypes::OutputDataConfig

Specifies the path to the Amazon S3 bucket where you store model artifacts from the training jobs that the tuning job launches.



10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#resource_configTypes::ResourceConfig

The resources, including the compute instances and storage volumes, to use for the training jobs that the tuning job launches.

Storage volumes store model artifacts and incremental states. Training algorithms might also use storage volumes for scratch space. If you want Amazon SageMaker to use the storage volume to store the training data, choose File as the TrainingInputMode in the algorithm specification. For distributed training algorithms, specify an instance count greater than 1.



10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#role_arnString

The Amazon Resource Name (ARN) of the IAM role associated with the training jobs that the tuning job launches.

Returns:

  • (String)


10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#static_hyper_parametersHash<String,String>

Specifies the values of hyperparameters that do not change for the tuning job.

Returns:

  • (Hash<String,String>)


10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#stopping_conditionTypes::StoppingCondition

Specifies a limit to how long a model hyperparameter training job can run. It also specifies how long you are willing to wait for a managed spot training job to complete. When the job reaches the a limit, Amazon SageMaker ends the training job. Use this API to cap model training costs.



10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#tuning_objectiveTypes::HyperParameterTuningJobObjective

Defines the objective metric for a hyperparameter tuning job. Hyperparameter tuning uses the value of this metric to evaluate the training jobs it launches, and returns the training job that results in either the highest or lowest value for this metric, depending on the value you specify for the Type parameter.



10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end

#vpc_configTypes::VpcConfig

The VpcConfig object that specifies the VPC that you want the training jobs that this hyperparameter tuning job launches to connect to. Control access to and from your training container by configuring the VPC. For more information, see Protect Training Jobs by Using an Amazon Virtual Private Cloud.

Returns:



10985
10986
10987
10988
10989
10990
10991
10992
10993
10994
10995
10996
10997
10998
10999
11000
11001
11002
11003
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 10985

class HyperParameterTrainingJobDefinition < Struct.new(
  :definition_name,
  :tuning_objective,
  :hyper_parameter_ranges,
  :static_hyper_parameters,
  :algorithm_specification,
  :role_arn,
  :input_data_config,
  :vpc_config,
  :output_data_config,
  :resource_config,
  :stopping_condition,
  :enable_network_isolation,
  :enable_inter_container_traffic_encryption,
  :enable_managed_spot_training,
  :checkpoint_config)
  SENSITIVE = []
  include Aws::Structure
end