Class: Aws::SageMaker::Types::InputConfig

Inherits:
Struct
  • Object
show all
Defined in:
gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb

Overview

Note:

When making an API call, you may pass InputConfig data as a hash:

{
  s3_uri: "S3Uri", # required
  data_input_config: "DataInputConfig", # required
  framework: "TENSORFLOW", # required, accepts TENSORFLOW, KERAS, MXNET, ONNX, PYTORCH, XGBOOST, TFLITE, DARKNET, SKLEARN
  framework_version: "FrameworkVersion",
}

Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

Constant Summary collapse

SENSITIVE =
[]

Instance Attribute Summary collapse

Instance Attribute Details

#data_input_configString

Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.

  • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, \{"input":[1,1024,1024,3]\}

      • If using the CLI, \{"input":[1,1024,1024,3]\}

    • Examples for two inputs:

      • If using the console, \{"data1": [1,28,28,1], "data2":[1,28,28,1]\}

      • If using the CLI, \{"data1": [1,28,28,1], "data2":[1,28,28,1]\}

  • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, \{"input_1":[1,3,224,224]\}

      • If using the CLI, \{"input_1":[1,3,224,224]\}

    • Examples for two inputs:

      • If using the console, \{"input_1": [1,3,224,224], "input_2":[1,3,224,224]\}

      • If using the CLI, \{"input_1": [1,3,224,224], "input_2":[1,3,224,224]\}

  • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, \{"data":[1,3,1024,1024]\}

      • If using the CLI, \{"data":[1,3,1024,1024]\}

    • Examples for two inputs:

      • If using the console, \{"var1": [1,1,28,28], "var2":[1,1,28,28]\}

      • If using the CLI, \{"var1": [1,1,28,28], "var2":[1,1,28,28]\}

  • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

    • Examples for one input in dictionary format:

      • If using the console, \{"input0":[1,3,224,224]\}

      • If using the CLI, \{"input0":[1,3,224,224]\}

    • Example for one input in list format: [[1,3,224,224]]

    • Examples for two inputs in dictionary format:

      • If using the console, \{"input0":[1,3,224,224], "input1":[1,3,224,224]\}

      • If using the CLI, \{"input0":[1,3,224,224], "input1":[1,3,224,224]\}

    • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

  • XGBOOST: input data name and shape are not needed.

DataInputConfig supports the following parameters for CoreML OutputConfig$TargetDevice (ML Model format):

  • shape: Input shape, for example \{"input_1": \{"shape": [1,224,224,3]\}\}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

    • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: \{"input_1": \{"shape": ["1..10", 224, 224, 3]\}\}

    • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: \{"input_1": \{"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]\}\}

  • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example \{"input_1": \{"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]\}\}

  • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.

  • bias: If the input type is an Image, you need to provide the bias vector.

  • scale: If the input type is an Image, you need to provide a scale factor.

CoreML ClassifierConfig parameters can be specified using OutputConfig$CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

  • Tensor type input:

    • "DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]\}\}

    ^

  • Tensor type input without input name (PyTorch):

    • "DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]\}]

    ^

  • Image type input:

    • "DataInputConfig": \{"input_1": \{"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255\}\}

    • "CompilerOptions": \{"class_labels": "imagenet_labels_1000.txt"\}

  • Image type input without input name (PyTorch):

    • "DataInputConfig": [\{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255\}]

    • "CompilerOptions": \{"class_labels": "imagenet_labels_1000.txt"\}

Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

  • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

    • "DataInputConfig": \{"inputs": [1, 224, 224, 3]\}

    • "CompilerOptions": \{"signature_def_key": "serving_custom"\}

  • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

    • "DataInputConfig": \{"input_tensor:0": [1, 224, 224, 3]\}

    • "CompilerOptions": \{"output_names": ["output_tensor:0"]\}

Returns:

  • (String)


19182
19183
19184
19185
19186
19187
19188
19189
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 19182

class InputConfig < Struct.new(
  :s3_uri,
  :data_input_config,
  :framework,
  :framework_version)
  SENSITIVE = []
  include Aws::Structure
end

#frameworkString

Identifies the framework in which the model was trained. For example: TENSORFLOW.

Returns:

  • (String)


19182
19183
19184
19185
19186
19187
19188
19189
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 19182

class InputConfig < Struct.new(
  :s3_uri,
  :data_input_config,
  :framework,
  :framework_version)
  SENSITIVE = []
  include Aws::Structure
end

#framework_versionString

Specifies the framework version to use.

This API field is only supported for PyTorch framework versions 1.4, 1.5, and 1.6 for cloud instance target devices: ml_c4, ml_c5, ml_m4, ml_m5, ml_p2, ml_p3, and ml_g4dn.

Returns:

  • (String)


19182
19183
19184
19185
19186
19187
19188
19189
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 19182

class InputConfig < Struct.new(
  :s3_uri,
  :data_input_config,
  :framework,
  :framework_version)
  SENSITIVE = []
  include Aws::Structure
end

#s3_uriString

The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

Returns:

  • (String)


19182
19183
19184
19185
19186
19187
19188
19189
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 19182

class InputConfig < Struct.new(
  :s3_uri,
  :data_input_config,
  :framework,
  :framework_version)
  SENSITIVE = []
  include Aws::Structure
end