You are viewing documentation for version 3 of the AWS SDK for Ruby. Version 2 documentation can be found here.

Class: Aws::SageMaker::Types::InputConfig

Inherits:
Struct
  • Object
show all
Defined in:
gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb

Overview

Note:

When making an API call, you may pass InputConfig data as a hash:

{
  s3_uri: "S3Uri", # required
  data_input_config: "DataInputConfig", # required
  framework: "TENSORFLOW", # required, accepts TENSORFLOW, MXNET, ONNX, PYTORCH, XGBOOST
}

Contains information about the location of input model artifacts, the name and shape of the expected data inputs, and the framework in which the model was trained.

Instance Attribute Summary collapse

Instance Attribute Details

#data_input_configString

Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are InputConfig$Framework specific.

  • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, \{"input":[1,1024,1024,3]\}

      • If using the CLI, \{"input":[1,1024,1024,3]\}

    • Examples for two inputs:

      • If using the console, \{"data1": [1,28,28,1], "data2":[1,28,28,1]\}

      • If using the CLI, \{"data1": [1,28,28,1], "data2":[1,28,28,1]\}

  • MXNET/ONNX: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

    • Examples for one input:

      • If using the console, \{"data":[1,3,1024,1024]\}

      • If using the CLI, \{"data":[1,3,1024,1024]\}

    • Examples for two inputs:

      • If using the console, \{"var1": [1,1,28,28], "var2":[1,1,28,28]\}

      • If using the CLI, \{"var1": [1,1,28,28], "var2":[1,1,28,28]\}

  • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

    • Examples for one input in dictionary format:

      • If using the console, \{"input0":[1,3,224,224]\}

      • If using the CLI, \{"input0":[1,3,224,224]\}

    • Example for one input in list format: [[1,3,224,224]]

    • Examples for two inputs in dictionary format:

      • If using the console, \{"input0":[1,3,224,224], "input1":[1,3,224,224]\}

      • If using the CLI, \{"input0":[1,3,224,224], "input1":[1,3,224,224]\}

    • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

  • XGBOOST: input data name and shape are not needed.

Returns:

  • (String)


6643
6644
6645
6646
6647
6648
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 6643

class InputConfig < Struct.new(
  :s3_uri,
  :data_input_config,
  :framework)
  include Aws::Structure
end

#frameworkString

Identifies the framework in which the model was trained. For example: TENSORFLOW.

Returns:

  • (String)


6643
6644
6645
6646
6647
6648
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 6643

class InputConfig < Struct.new(
  :s3_uri,
  :data_input_config,
  :framework)
  include Aws::Structure
end

#s3_uriString

The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

Returns:

  • (String)


6643
6644
6645
6646
6647
6648
# File 'gems/aws-sdk-sagemaker/lib/aws-sdk-sagemaker/types.rb', line 6643

class InputConfig < Struct.new(
  :s3_uri,
  :data_input_config,
  :framework)
  include Aws::Structure
end