Amazon S3 as the Data Lake Storage Platform - Building Big Data Storage Solutions (Data Lakes) for Maximum Flexibility

Amazon S3 as the Data Lake Storage Platform

The Amazon S3-based data lake solution uses Amazon S3 as its primary storage platform. Amazon S3 provides an optimal foundation for a data lake because of its virtually unlimited scalability. You can seamlessly and nondisruptively increase storage from gigabytes to petabytes of content, paying only for what you use. Amazon S3 is designed to provide 99.999999999% durability. It has scalable performance, ease-of-use features, and native encryption and access control capabilities. Amazon S3 integrates with a broad portfolio of AWS and third-party ISV data processing tools.

Key data lake-enabling features of Amazon S3 include the following:

  • Decoupling of storage from compute and data processing – In traditional Hadoop and data warehouse solutions, storage and compute are tightly coupled, making it difficult to optimize costs and data processing workflows. With Amazon S3, you can cost-effectively store all data types in their native formats. You can then launch as many or as few virtual servers as you need using Amazon Elastic Compute Cloud (EC2), and you can use AWS analytics tools to process your data. You can optimize your EC2 instances to provide the right ratios of CPU, memory, and bandwidth for best performance.

  • Centralized data architecture – Amazon S3 makes it easy to build a multi-tenant environment, where many users can bring their own data analytics tools to a common set of data. This improves both cost and data governance over that of traditional solutions, which require multiple copies of data to be distributed across multiple processing platforms.

  • Integration with clusterless and serverless AWS services – Use Amazon S3 with Amazon Athena, Amazon Redshift Spectrum, Amazon Rekognition, and AWS Glue to query and process data. Amazon S3 also integrates with AWS Lambda serverless computing to run code without provisioning or managing servers. With all of these capabilities, you only pay for the actual amounts of data you process or for the compute time that you consume.

  • Standardized APIs – Amazon S3 RESTful APIs are simple, easy to use, and supported by most major third-party independent software vendors (ISVs), including leading Apache Hadoop and analytics tool vendors. This allows customers to bring the tools they are most comfortable with and knowledgeable about to help them perform analytics on data in Amazon S3.