本文档仅适用于 AWS CLI 版本 1。有关 AWS CLI 版本 2 的相关文档,请参阅版本 2 用户指南。
使用 AWS CLI 的 Amazon Comprehend 示例
以下代码示例演示了如何通过将 AWS Command Line Interface与 Amazon Comprehend 结合使用,来执行操作和实现常见场景。
操作是大型程序的代码摘录,必须在上下文中运行。您可以通过操作了解如何调用单个服务函数,还可以通过函数相关场景的上下文查看操作。
每个示例都包含一个指向完整源代码的链接,您可以从中找到有关如何在上下文中设置和运行代码的说明。
主题
操作
以下代码示例演示了如何使用 batch-detect-dominant-language。
- AWS CLI
-
检测多个输入文本的主要语言
以下
batch-detect-dominant-language示例分析多个输入文本并返回每个文本的主要语言。预训练模型的置信度分数也是每个预测的输出。aws comprehend batch-detect-dominant-language \ --text-list"Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."输出:
{ "ResultList": [ { "Index": 0, "Languages": [ { "LanguageCode": "en", "Score": 0.9986501932144165 } ] } ], "ErrorList": [] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的主要语言。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 BatchDetectDominantLanguage
。
-
以下代码示例演示了如何使用 batch-detect-entities。
- AWS CLI
-
检测来自多个输入文本的实体
以下
batch-detect-entities示例分析多个输入文本并返回每个文本的命名实体。预训练模型的置信度分数也是每个预测的输出。aws comprehend batch-detect-entities \ --language-code en \ --text-list"Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st.""Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."输出:
{ "ResultList": [ { "Index": 0, "Entities": [ { "Score": 0.9985517859458923, "Type": "PERSON", "Text": "Jane", "BeginOffset": 5, "EndOffset": 9 }, { "Score": 0.9767839312553406, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 16, "EndOffset": 50 }, { "Score": 0.9856694936752319, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 71, "EndOffset": 90 }, { "Score": 0.9652159810066223, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.9986667037010193, "Type": "DATE", "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 1, "Entities": [ { "Score": 0.720084547996521, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9865870475769043, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.5895616412162781, "Type": "LOCATION", "Text": "Anywhere", "BeginOffset": 60, "EndOffset": 68 }, { "Score": 0.6809214353561401, "Type": "PERSON", "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9979087114334106, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的实体。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 BatchDetectEntities
。
-
以下代码示例演示了如何使用 batch-detect-key-phrases。
- AWS CLI
-
检测多个文本输入的关键短语
以下
batch-detect-key-phrases示例分析多个输入文本并返回每个文本的关键名词短语。也会输出每个预测的预训练模型的置信度分数。aws comprehend batch-detect-key-phrases \ --language-code en \ --text-list"Hello Zhang Wei, I am John, writing to you about the trip for next Saturday.""Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st.""Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."输出:
{ "ResultList": [ { "Index": 0, "KeyPhrases": [ { "Score": 0.99700927734375, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9929308891296387, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9997230172157288, "Text": "the trip", "BeginOffset": 49, "EndOffset": 57 }, { "Score": 0.9999470114707947, "Text": "next Saturday", "BeginOffset": 62, "EndOffset": 75 } ] }, { "Index": 1, "KeyPhrases": [ { "Score": 0.8358274102210999, "Text": "Dear Jane", "BeginOffset": 0, "EndOffset": 9 }, { "Score": 0.989359974861145, "Text": "Your AnyCompany Financial Services", "BeginOffset": 11, "EndOffset": 45 }, { "Score": 0.8812323808670044, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 47, "EndOffset": 90 }, { "Score": 0.9999381899833679, "Text": "a minimum payment", "BeginOffset": 95, "EndOffset": 112 }, { "Score": 0.9997439980506897, "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.996875524520874, "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 2, "KeyPhrases": [ { "Score": 0.9990295767784119, "Text": "customer feedback", "BeginOffset": 12, "EndOffset": 29 }, { "Score": 0.9994127750396729, "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9892991185188293, "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.9969810843467712, "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9703696370124817, "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的关键词。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 BatchDetectKeyPhrases
。
-
以下代码示例演示了如何使用 batch-detect-sentiment。
- AWS CLI
-
检测多个输入文本的主导情绪
以下
batch-detect-sentiment示例分析多个输入文本,并返回每个文本的主导情绪(POSITIVE、NEUTRAL、MIXED或NEGATIVE)。aws comprehend batch-detect-sentiment \ --text-list"That movie was very boring, I can't believe it was over four hours long.""It is a beautiful day for hiking today.""My meal was okay, I'm excited to try other restaurants."\ --language-codeen输出:
{ "ResultList": [ { "Index": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.00011316669406369328, "Negative": 0.9995445609092712, "Neutral": 0.00014722718333359808, "Mixed": 0.00019498742767609656 } }, { "Index": 1, "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9981263279914856, "Negative": 0.00015240783977787942, "Neutral": 0.0013876151060685515, "Mixed": 0.00033366199932061136 } }, { "Index": 2, "Sentiment": "MIXED", "SentimentScore": { "Positive": 0.15930435061454773, "Negative": 0.11471917480230331, "Neutral": 0.26897063851356506, "Mixed": 0.45700588822364807 } } ], "ErrorList": [] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的情绪。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 BatchDetectSentiment
。
-
以下代码示例演示了如何使用 batch-detect-syntax。
- AWS CLI
-
检查多个输入文本中单词的语法和语音部分
以下
batch-detect-syntax示例分析多个输入文本的语法并返回语音的不同部分。预训练模型的置信度分数也是每个预测的输出。aws comprehend batch-detect-syntax \ --text-list"It is a beautiful day.""Can you please pass the salt?""Please pay the bill before the 31st."\ --language-codeen输出:
{ "ResultList": [ { "Index": 0, "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999937117099762 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999926686286926 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987891912460327 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999778866767883 } }, { "TokenId": 6, "Text": ".", "BeginOffset": 21, "EndOffset": 22, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999974966049194 } } ] }, { "Index": 1, "SyntaxTokens": [ { "TokenId": 1, "Text": "Can", "BeginOffset": 0, "EndOffset": 3, "PartOfSpeech": { "Tag": "AUX", "Score": 0.9999770522117615 } }, { "TokenId": 2, "Text": "you", "BeginOffset": 4, "EndOffset": 7, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999986886978149 } }, { "TokenId": 3, "Text": "please", "BeginOffset": 8, "EndOffset": 14, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9681622385978699 } }, { "TokenId": 4, "Text": "pass", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999874830245972 } }, { "TokenId": 5, "Text": "the", "BeginOffset": 20, "EndOffset": 23, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999827146530151 } }, { "TokenId": 6, "Text": "salt", "BeginOffset": 24, "EndOffset": 28, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9995040893554688 } }, { "TokenId": 7, "Text": "?", "BeginOffset": 28, "EndOffset": 29, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.999998152256012 } } ] }, { "Index": 2, "SyntaxTokens": [ { "TokenId": 1, "Text": "Please", "BeginOffset": 0, "EndOffset": 6, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9997857809066772 } }, { "TokenId": 2, "Text": "pay", "BeginOffset": 7, "EndOffset": 10, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999252557754517 } }, { "TokenId": 3, "Text": "the", "BeginOffset": 11, "EndOffset": 14, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999842643737793 } }, { "TokenId": 4, "Text": "bill", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999588131904602 } }, { "TokenId": 5, "Text": "before", "BeginOffset": 20, "EndOffset": 26, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9958304762840271 } }, { "TokenId": 6, "Text": "the", "BeginOffset": 27, "EndOffset": 30, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999947547912598 } }, { "TokenId": 7, "Text": "31st", "BeginOffset": 31, "EndOffset": 35, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9924124479293823 } }, { "TokenId": 8, "Text": ".", "BeginOffset": 35, "EndOffset": 36, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999955892562866 } } ] } ], "ErrorList": [] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的语法分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 BatchDetectSyntax
。
-
以下代码示例演示了如何使用 batch-detect-targeted-sentiment。
- AWS CLI
-
检测多个输入文本的情绪和每个命名实体
以下
batch-detect-targeted-sentiment示例分析多个输入文本,并返回命名实体以及每个实体附带的主导情绪。预训练模型的置信度分数也是每个预测的输出。aws comprehend batch-detect-targeted-sentiment \ --language-code en \ --text-list"That movie was really boring, the original was way more entertaining""The trail is extra beautiful today.""My meal was just okay."输出:
{ "ResultList": [ { "Index": 0, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999009966850281, "GroupScore": 1.0, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.13887299597263336, "Negative": 0.8057460188865662, "Neutral": 0.05525200068950653, "Mixed": 0.00012799999967683107 } }, "BeginOffset": 5, "EndOffset": 10 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9921110272407532, "GroupScore": 1.0, "Text": "original", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999989867210388, "Negative": 9.999999974752427e-07, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 34, "EndOffset": 42 } ] } ] }, { "Index": 1, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.7545599937438965, "GroupScore": 1.0, "Text": "trail", "Type": "OTHER", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 4, "EndOffset": 9 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999960064888, "GroupScore": 1.0, "Text": "today", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 9.000000318337698e-06, "Negative": 1.9999999949504854e-06, "Neutral": 0.9999859929084778, "Mixed": 3.999999989900971e-06 } }, "BeginOffset": 29, "EndOffset": 34 } ] } ] }, { "Index": 2, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999880194664001, "GroupScore": 1.0, "Text": "My", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 2 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9995260238647461, "GroupScore": 1.0, "Text": "meal", "Type": "OTHER", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.04695599898695946, "Negative": 0.003226999891921878, "Neutral": 0.6091709733009338, "Mixed": 0.34064599871635437 } }, "BeginOffset": 3, "EndOffset": 7 } ] } ] } ], "ErrorList": [] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的目标情绪。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 BatchDetectTargetedSentiment
。
-
以下代码示例演示了如何使用 classify-document。
- AWS CLI
-
使用指定模型端点对文档进行分类
以下
classify-document示例对带有自定义模型端点的文档进行分类。此示例中的模型是在包含标记为垃圾邮件、非垃圾邮件或“ham”短信的数据集中训练的。aws comprehend classify-document \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint\ --text"CONGRATULATIONS! TXT 1235550100 to win $5000"输出:
{ "Classes": [ { "Name": "spam", "Score": 0.9998599290847778 }, { "Name": "ham", "Score": 0.00014001205272506922 } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的自定义分类。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ClassifyDocument
。
-
以下代码示例演示了如何使用 contains-pii-entities。
- AWS CLI
-
分析输入文本中是否存在 PII 信息
以下
contains-pii-entities示例分析输入文本中是否存在个人身份信息(PII),并返回已识别的 PII 实体类型的标签,例如姓名、地址、银行账号或电话号码。aws comprehend contains-pii-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. Customer feedback for Sunshine Spa, 100 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."输出:
{ "Labels": [ { "Name": "NAME", "Score": 1.0 }, { "Name": "EMAIL", "Score": 1.0 }, { "Name": "BANK_ACCOUNT_NUMBER", "Score": 0.9995794296264648 }, { "Name": "BANK_ROUTING", "Score": 0.9173126816749573 }, { "Name": "CREDIT_DEBIT_NUMBER", "Score": 1.0 } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的个人身份信息(PII)。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ContainsPiiEntities
。
-
以下代码示例演示了如何使用 create-dataset。
- AWS CLI
-
创建飞轮数据集
以下
create-dataset示例创建一个飞轮数据集。该数据集将用作--dataset-type标签指定的其他训练数据。aws comprehend create-dataset \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity\ --dataset-nameexample-dataset\ --dataset-type"TRAIN"\ --input-data-configfile://inputConfig.jsonfile://inputConfig.json的内容:{ "DataFormat": "COMPREHEND_CSV", "DocumentClassifierInputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/training-data.csv" } }输出:
{ "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 CreateDataset
。
-
以下代码示例演示了如何使用 create-document-classifier。
- AWS CLI
-
创建文档分类器对文档进行分类
以下
create-document-classifier示例启动文档分类器模型的训练过程。训练数据文件training.csv位于--input-data-config标签处。training.csv是一个两列文档,其中第一列提供标签或分类,第二列提供文档。aws comprehend create-document-classifier \ --document-classifier-nameexample-classifier\ --data-access-arnarn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --language-codeen输出:
{ "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的自定义分类。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 CreateDocumentClassifier
。
-
以下代码示例演示了如何使用 create-endpoint。
- AWS CLI
-
为自定义模型创建端点
以下
create-endpoint示例为之前训练的自定义模型的同步推理创建端点。aws comprehend create-endpoint \ --endpoint-nameexample-classifier-endpoint-1\ --model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier\ --desired-inference-units1输出:
{ "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的管理 Amazon Comprehend 端点。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 CreateEndpoint
。
-
以下代码示例演示了如何使用 create-entity-recognizer。
- AWS CLI
-
创建自定义实体识别器
以下
create-entity-recognizer示例启动自定义实体识别器模型的训练过程。此示例使用包含训练文档raw_text.csv和 CSV 实体列表entity_list.csv的 CSV 文件来训练模型。entity-list.csv包含以下列:文本和类型。aws comprehend create-entity-recognizer \ --recognizer-nameexample-entity-recognizer--data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --input-data-config"EntityTypes=[{Type=DEVICE}],Documents={S3Uri=s3://amzn-s3-demo-bucket/trainingdata/raw_text.csv},EntityList={S3Uri=s3://amzn-s3-demo-bucket/trainingdata/entity_list.csv}"--language-codeen输出:
{ "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:example-entity-recognizer/entityrecognizer1" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的自定义实体识别。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 CreateEntityRecognizer
。
-
以下代码示例演示了如何使用 create-flywheel。
- AWS CLI
-
创建飞轮
以下
create-flywheel示例创建一个飞轮来编排文档分类或实体识别模型的持续训练。此示例中的飞轮是为了管理--active-model-arn标签指定的现有训练模型。创建飞轮时,会在--input-data-lake标签处创建一个数据湖。aws comprehend create-flywheel \ --flywheel-nameexample-flywheel\ --active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --data-lake-s3-uri"s3://amzn-s3-demo-bucket"输出:
{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 CreateFlywheel
。
-
以下代码示例演示了如何使用 delete-document-classifier。
- AWS CLI
-
删除自定义文档分类器
以下
delete-document-classifier示例删除了自定义文档分类器模型。aws comprehend delete-document-classifier \ --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的管理 Amazon Comprehend 端点。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DeleteDocumentClassifier
。
-
以下代码示例演示了如何使用 delete-endpoint。
- AWS CLI
-
删除自定义模型的端点
以下
delete-endpoint示例删除指定模型的端点。必须删除所有端点才能删除模型。aws comprehend delete-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的管理 Amazon Comprehend 端点。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DeleteEndpoint
。
-
以下代码示例演示了如何使用 delete-entity-recognizer。
- AWS CLI
-
删除自定义实体识别器模型
以下
delete-entity-recognizer示例删除自定义实体识别器模型。aws comprehend delete-entity-recognizer \ --entity-recognizer-arnarn:aws:comprehend:us-west-2:111122223333:entity-recognizer/example-entity-recognizer-1此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的管理 Amazon Comprehend 端点。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DeleteEntityRecognizer
。
-
以下代码示例演示了如何使用 delete-flywheel。
- AWS CLI
-
删除飞轮
以下
delete-flywheel示例删除飞轮。与该飞轮关联的数据湖或模型不会删除。aws comprehend delete-flywheel \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DeleteFlywheel
。
-
以下代码示例演示了如何使用 delete-resource-policy。
- AWS CLI
-
删除基于资源的策略
以下
delete-resource-policy示例从 Amazon Comprehend 资源中删除基于资源的策略。aws comprehend delete-resource-policy \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1/version/1此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的在 AWS 账户之间复制自定义模型。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DeleteResourcePolicy
。
-
以下代码示例演示了如何使用 describe-dataset。
- AWS CLI
-
描述飞轮数据集
以下
describe-dataset示例获取飞轮数据集的属性。aws comprehend describe-dataset \ --dataset-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset输出:
{ "DatasetProperties": { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset", "DatasetName": "example-dataset", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/12345678A123456Z/datasets/example-dataset/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeDataset
。
-
以下代码示例演示了如何使用 describe-document-classification-job。
- AWS CLI
-
描述文档分类作业
以下
describe-document-classification-job示例将获取异步文档分类作业的属性。aws comprehend describe-document-classification-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "DocumentClassificationJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/1", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-CLN-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的自定义分类。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeDocumentClassificationJob
。
-
以下代码示例演示了如何使用 describe-document-classifier。
- AWS CLI
-
描述文档分类器
以下
describe-document-classifier示例将获取自定义文档分类器模型的属性。aws comprehend describe-document-classifier \ --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1输出:
{ "DocumentClassifierProperties": { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "MULTI_CLASS" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的创建和管理自定义模型。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeDocumentClassifier
。
-
以下代码示例演示了如何使用 describe-dominant-language-detection-job。
- AWS CLI
-
描述主要语言检测作业。
以下
describe-dominant-language-detection-job示例获取异步主要语言检测作业的属性。aws comprehend describe-dominant-language-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "DominantLanguageDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeDominantLanguageDetectionJob
。
-
以下代码示例演示了如何使用 describe-endpoint。
- AWS CLI
-
描述指定端点
以下
describe-endpoint示例获取指定模型的端点属性。aws comprehend describe-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint输出:
{ "EndpointProperties": { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint, "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的管理 Amazon Comprehend 端点。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeEndpoint
。
-
以下代码示例演示了如何使用 describe-entities-detection-job。
- AWS CLI
-
描述实体检测作业
以下
describe-entities-detection-job示例获取异步实体检测作业的属性。aws comprehend describe-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "EntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-entity-detector", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeEntitiesDetectionJob
。
-
以下代码示例演示了如何使用 describe-entity-recognizer。
- AWS CLI
-
描述实体识别器
以下
describe-entity-recognizer示例获取自定义实体识别器模型的属性。aws comprehend describe-entity-recognizer \entity-recognizer-arnarn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1输出:
{ "EntityRecognizerProperties": { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "VersionName": "1" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的自定义实体识别。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeEntityRecognizer
。
-
以下代码示例演示了如何使用 describe-events-detection-job。
- AWS CLI
-
描述事件检测作业。
以下
describe-events-detection-job示例获取异步事件检测作业的属性。aws comprehend describe-events-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "EventsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "events_job_1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-12T18:45:56.054000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/EventsData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-EVENTS-123456abcdeb0e11022f22a11EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeEventsDetectionJob
。
-
以下代码示例演示了如何使用 describe-flywheel-iteration。
- AWS CLI
-
描述飞轮迭代
以下
describe-flywheel-iteration示例获取飞轮迭代的属性。aws comprehend describe-flywheel-iteration \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel\ --flywheel-iteration-id20232222AEXAMPLE输出:
{ "FlywheelIterationProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "FlywheelIterationId": "20232222AEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AveragePrecision": 0.8287636394041166, "AverageRecall": 0.7427084833645399, "AverageAccuracy": 0.8795394154118689 }, "TrainedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/Comprehend-Generated-v1-bb52d585", "TrainedModelMetrics": { "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-destination-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/evaluation/20230616T211026Z/" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeFlywheelIteration
。
-
以下代码示例演示了如何使用 describe-flywheel。
- AWS CLI
-
描述飞轮
以下
describe-flywheel示例获取飞轮的属性。在此示例中,与飞轮关联的模型是一个自定义分类器模型,该模型经过训练,可以将文档分类为垃圾邮件、非垃圾邮件或“ham”。aws comprehend describe-flywheel \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel输出:
{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS", "Labels": [ "ham", "spam" ] } }, "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-16T20:21:43.567000+00:00" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeFlywheel
。
-
以下代码示例演示了如何使用 describe-key-phrases-detection-job。
- AWS CLI
-
描述关键短语检测作业
以下
describe-key-phrases-detection-job示例获取异步关键短语检测作业的属性。aws comprehend describe-key-phrases-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "KeyPhrasesDetectionJobProperties": { "JobId": "69aa080c00fc68934a6a98f10EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/69aa080c00fc68934a6a98f10EXAMPLE", "JobName": "example-key-phrases-detection-job", "JobStatus": "COMPLETED", "SubmitTime": 1686606439.177, "EndTime": 1686606806.157, "InputDataConfig": { "S3Uri": "s3://dereksbucket1001/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://dereksbucket1002/testfolder/111122223333-KP-69aa080c00fc68934a6a98f10EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testrole" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeKeyPhrasesDetectionJob
。
-
以下代码示例演示了如何使用 describe-pii-entities-detection-job。
- AWS CLI
-
描述 PII 实体检测作业
以下
describe-pii-entities-detection-job示例获取异步 PII 实体检测作业的属性。aws comprehend describe-pii-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "PiiEntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-pii-entities-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribePiiEntitiesDetectionJob
。
-
以下代码示例演示了如何使用 describe-resource-policy。
- AWS CLI
-
描述附加到模型的资源策略
以下
describe-resource-policy示例获取附加到模型的基于资源的策略属性。aws comprehend describe-resource-policy \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1输出:
{ "ResourcePolicy": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow\",\"Principal\":{\"AWS\":\"arn:aws:iam::444455556666:root\"},\"Action\":\"comprehend:ImportModel\",\"Resource\":\"*\"}]}", "CreationTime": "2023-06-19T18:44:26.028000+00:00", "LastModifiedTime": "2023-06-19T18:53:02.002000+00:00", "PolicyRevisionId": "baa675d069d07afaa2aa3106ae280f61" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的在 AWS 账户之间复制自定义模型。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeResourcePolicy
。
-
以下代码示例演示了如何使用 describe-sentiment-detection-job。
- AWS CLI
-
描述情绪检测作业
以下
describe-sentiment-detection-job示例获取异步情绪检测作业的属性。aws comprehend describe-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "SentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeSentimentDetectionJob
。
-
以下代码示例演示了如何使用 describe-targeted-sentiment-detection-job。
- AWS CLI
-
描述目标情绪检测作业
以下
describe-targeted-sentiment-detection-job示例获取异步目标情绪检测作业的属性。aws comprehend describe-targeted-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "TargetedSentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeTargetedSentimentDetectionJob
。
-
以下代码示例演示了如何使用 describe-topics-detection-job。
- AWS CLI
-
描述主题检测作业
以下
describe-topics-detection-job示例获取异步主题检测作业的属性。aws comprehend describe-topics-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "TopicsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example_topics_detection", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-examplerole" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DescribeTopicsDetectionJob
。
-
以下代码示例演示了如何使用 detect-dominant-language。
- AWS CLI
-
检测输入文本的主要语言
以下
detect-dominant-language分析输入文本并识别主要语言。预训练模型的置信度分数也是输出。aws comprehend detect-dominant-language \ --text"It is a beautiful day in Seattle."输出:
{ "Languages": [ { "LanguageCode": "en", "Score": 0.9877256155014038 } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的主要语言。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DetectDominantLanguage
。
-
以下代码示例演示了如何使用 detect-entities。
- AWS CLI
-
检测输入文本中的命名实体
以下
detect-entities示例分析输入文本并返回命名实体。预训练模型的置信度分数也是每个预测的输出。aws comprehend detect-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."输出:
{ "Entities": [ { "Score": 0.9994556307792664, "Type": "PERSON", "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9981022477149963, "Type": "PERSON", "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9986887574195862, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 33, "EndOffset": 67 }, { "Score": 0.9959119558334351, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9708039164543152, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9987268447875977, "Type": "DATE", "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9858865737915039, "Type": "OTHER", "Text": "XXXXXX1111", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9700471758842468, "Type": "OTHER", "Text": "XXXXX0000", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.9591118693351746, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 340, "EndOffset": 352 }, { "Score": 0.9797496795654297, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.994929313659668, "Type": "PERSON", "Text": "Alice", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9949769377708435, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 403, "EndOffset": 418 } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的实体。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DetectEntities
。
-
以下代码示例演示了如何使用 detect-key-phrases。
- AWS CLI
-
检测输入文本中的关键词
以下
detect-key-phrases示例分析输入文本并识别关键名词短语。预训练模型的置信度分数也是每个预测的输出。aws comprehend detect-key-phrases \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."输出:
{ "KeyPhrases": [ { "Score": 0.8996376395225525, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9992469549179077, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.988385021686554, "Text": "Your AnyCompany Financial Services", "BeginOffset": 28, "EndOffset": 62 }, { "Score": 0.8740853071212769, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 64, "EndOffset": 107 }, { "Score": 0.9999437928199768, "Text": "a minimum payment", "BeginOffset": 112, "EndOffset": 129 }, { "Score": 0.9998900890350342, "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9979453086853027, "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9983011484146118, "Text": "your autopay settings", "BeginOffset": 172, "EndOffset": 193 }, { "Score": 0.9996572136878967, "Text": "your payment", "BeginOffset": 211, "EndOffset": 223 }, { "Score": 0.9995037317276001, "Text": "the due date", "BeginOffset": 227, "EndOffset": 239 }, { "Score": 0.9702621698379517, "Text": "your bank account number XXXXXX1111", "BeginOffset": 245, "EndOffset": 280 }, { "Score": 0.9179925918579102, "Text": "the routing number XXXXX0000.Customer feedback", "BeginOffset": 286, "EndOffset": 332 }, { "Score": 0.9978160858154297, "Text": "Sunshine Spa", "BeginOffset": 337, "EndOffset": 349 }, { "Score": 0.9706913232803345, "Text": "123 Main St", "BeginOffset": 351, "EndOffset": 362 }, { "Score": 0.9941995143890381, "Text": "comments", "BeginOffset": 379, "EndOffset": 387 }, { "Score": 0.9759287238121033, "Text": "Alice", "BeginOffset": 391, "EndOffset": 396 }, { "Score": 0.8376792669296265, "Text": "AnySpa@example.com", "BeginOffset": 400, "EndOffset": 415 } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的关键词。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DetectKeyPhrases
。
-
以下代码示例演示了如何使用 detect-pii-entities。
- AWS CLI
-
检测输入文本中的 PII 实体
以下
detect-pii-entities示例分析输入文本,并识别包含个人身份信息(PII)的实体。预训练模型的置信度分数也是每个预测的输出。aws comprehend detect-pii-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."输出:
{ "Entities": [ { "Score": 0.9998322129249573, "Type": "NAME", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9998878240585327, "Type": "NAME", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9994089603424072, "Type": "CREDIT_DEBIT_NUMBER", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9999760985374451, "Type": "DATE_TIME", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9999449253082275, "Type": "BANK_ACCOUNT_NUMBER", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9999847412109375, "Type": "BANK_ROUTING", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.999925434589386, "Type": "ADDRESS", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.9989161491394043, "Type": "NAME", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9994171857833862, "Type": "EMAIL", "BeginOffset": 403, "EndOffset": 418 } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的个人身份信息(PII)。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DetectPiiEntities
。
-
以下代码示例演示了如何使用 detect-sentiment。
- AWS CLI
-
检测输入文本的情绪
以下
detect-sentiment示例分析输入文本,并返回占主导地位的情绪(POSITIVE、NEUTRAL、MIXED或NEGATIVE)的推断。aws comprehend detect-sentiment \ --language-code en \ --text"It is a beautiful day in Seattle"输出:
{ "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9976957440376282, "Negative": 9.653854067437351e-05, "Neutral": 0.002169104292988777, "Mixed": 3.857641786453314e-05 } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的情绪。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DetectSentiment
。
-
以下代码示例演示了如何使用 detect-syntax。
- AWS CLI
-
检测输入文本中的语音部分
以下
detect-syntax示例分析输入文本的语法并返回语音的不同部分。预训练模型的置信度分数也是每个预测的输出。aws comprehend detect-syntax \ --language-code en \ --text"It is a beautiful day in Seattle."输出:
{ "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999901294708252 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999938607215881 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987351894378662 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999796748161316 } }, { "TokenId": 6, "Text": "in", "BeginOffset": 22, "EndOffset": 24, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9998047947883606 } }, { "TokenId": 7, "Text": "Seattle", "BeginOffset": 25, "EndOffset": 32, "PartOfSpeech": { "Tag": "PROPN", "Score": 0.9940530061721802 } } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的语法分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DetectSyntax
。
-
以下代码示例演示了如何使用 detect-targeted-sentiment。
- AWS CLI
-
检测输入文本中命名实体的目标情绪
以下
detect-targeted-sentiment示例分析输入文本,并返回命名实体以及与每个实体关联的目标情绪。也会输出每个预测的预训练模型的置信度分数。aws comprehend detect-targeted-sentiment \ --language-code en \ --text"I do not enjoy January because it is too cold but August is the perfect temperature"输出:
{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999979734420776, "GroupScore": 1.0, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 1 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9638869762420654, "GroupScore": 1.0, "Text": "January", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.0031610000878572464, "Negative": 0.9967250227928162, "Neutral": 0.00011100000119768083, "Mixed": 1.9999999949504854e-06 } }, "BeginOffset": 15, "EndOffset": 22 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { { "Score": 0.9664419889450073, "GroupScore": 1.0, "Text": "August", "Type": "DATE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999549984931946, "Negative": 3.999999989900971e-06, "Neutral": 4.099999932805076e-05, "Mixed": 0.0 } }, "BeginOffset": 50, "EndOffset": 56 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9803199768066406, "GroupScore": 1.0, "Text": "temperature", "Type": "ATTRIBUTE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 77, "EndOffset": 88 } ] } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的目标情绪。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 DetectTargetedSentiment
。
-
以下代码示例演示了如何使用 import-model。
- AWS CLI
-
导入模型
以下
import-model示例从不同的 AWS 账户导入模型。账户444455556666中的文档分类器模型具有基于资源的策略,允许账户111122223333导入模型。aws comprehend import-model \ --source-model-arnarn:aws:comprehend:us-west-2:444455556666:document-classifier/example-classifier输出:
{ "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的在 AWS 账户之间复制自定义模型。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ImportModel
。
-
以下代码示例演示了如何使用 list-datasets。
- AWS CLI
-
列出所有飞轮数据集
以下
list-datasets示例列出与飞轮关联的所有数据集。aws comprehend list-datasets \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity输出:
{ "DatasetPropertiesList": [ { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-1", "DatasetName": "example-dataset-1", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-1/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" }, { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-2", "DatasetName": "example-dataset-2", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-2/20230616T200607Z/", "Description": "TRAIN Dataset created by Flywheel creation.", "Status": "COMPLETED", "NumberOfDocuments": 5572, "CreationTime": "2023-06-16T20:06:07.722000+00:00" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListDatasets
。
-
以下代码示例演示了如何使用 list-document-classification-jobs。
- AWS CLI
-
列出所有文档分类作业
以下
list-document-classification-jobs示例列出所有文档分类作业。aws comprehend list-document-classification-jobs输出:
{ "DocumentClassificationJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/1234567890101-CLN-e758dd56b824aa717ceab551f11749fb/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "exampleclassificationjob2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:22:39.829000+00:00", "EndTime": "2023-06-14T17:28:46.107000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/1234567890101-CLN-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的自定义分类。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListDocumentClassificationJobs
。
-
以下代码示例演示了如何使用 list-document-classifier-summaries。
- AWS CLI
-
列出所有已创建文档分类器的摘要
以下
list-document-classifier-summaries示例列出所有已创建文档分类器的摘要。aws comprehend list-document-classifier-summaries输出:
{ "DocumentClassifierSummariesList": [ { "DocumentClassifierName": "example-classifier-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-13T22:07:59.825000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" }, { "DocumentClassifierName": "example-classifier-2", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-13T21:54:59.589000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "TRAINED" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的创建和管理自定义模型。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListDocumentClassifierSummaries
。
-
以下代码示例演示了如何使用 list-document-classifiers。
- AWS CLI
-
列出所有文档分类器
以下
list-document-classifiers示例列出所有经过训练和正在训练的文档分类器模型。aws comprehend list-document-classifiers输出:
{ "DocumentClassifierPropertiesList": [ { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" }, { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "LanguageCode": "en", "Status": "TRAINING", "SubmitTime": "2023-06-13T21:20:28.690000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的创建和管理自定义模型。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListDocumentClassifiers
。
-
以下代码示例演示了如何使用 list-dominant-language-detection-jobs。
- AWS CLI
-
列出所有主要语言检测作业
以下
list-dominant-language-detection-jobs示例列出所有正在进行和已完成的异步主要语言检测作业。aws comprehend list-dominant-language-detection-jobs输出:
{ "DominantLanguageDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "EndTime": "2023-06-09T18:18:45.498000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-09T18:16:33.690000+00:00", "EndTime": "2023-06-09T18:24:40.608000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListDominantLanguageDetectionJobs
。
-
以下代码示例演示了如何使用 list-endpoints。
- AWS CLI
-
列出所有端点
以下
list-endpoints示例列出所有活动的指定模型的端点。aws comprehend list-endpoints输出:
{ "EndpointPropertiesList": [ { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" }, { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint2", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的管理 Amazon Comprehend 端点。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListEndpoints
。
-
以下代码示例演示了如何使用 list-entities-detection-jobs。
- AWS CLI
-
列出所有实体检测作业
以下
list-entities-detection-jobs示例列出所有异步实体检测作业。aws comprehend list-entities-detection-jobs输出:
{ "EntitiesDetectionJobPropertiesList": [ { "JobId": "468af39c28ab45b83eb0c4ab9EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/468af39c28ab45b83eb0c4ab9EXAMPLE", "JobName": "example-entities-detection", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T20:57:46.476000+00:00", "EndTime": "2023-06-08T21:05:53.718000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-468af39c28ab45b83eb0c4ab9EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "809691caeaab0e71406f80a28EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/809691caeaab0e71406f80a28EXAMPLE", "JobName": "example-entities-detection-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-809691caeaab0e71406f80a28EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "e00597c36b448b91d70dea165EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/e00597c36b448b91d70dea165EXAMPLE", "JobName": "example-entities-detection-3", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:19:28.528000+00:00", "EndTime": "2023-06-08T22:27:33.991000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-e00597c36b448b91d70dea165EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的实体。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListEntitiesDetectionJobs
。
-
以下代码示例演示了如何使用 list-entity-recognizer-summaries。
- AWS CLI
-
查看所有已创建实体识别器的摘要列表
以下
list-entity-recognizer-summaries示例列出所有实体识别器摘要。aws comprehend list-entity-recognizer-summaries输出:
{ "EntityRecognizerSummariesList": [ { "RecognizerName": "entity-recognizer-3", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-15T23:15:07.621000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "STOP_REQUESTED" }, { "RecognizerName": "entity-recognizer-2", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T22:55:27.805000+00:00", "LatestVersionName": "2" "LatestVersionStatus": "TRAINED" }, { "RecognizerName": "entity-recognizer-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T20:44:59.631000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的自定义实体识别。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListEntityRecognizerSummaries
。
-
以下代码示例演示了如何使用 list-entity-recognizers。
- AWS CLI
-
列出所有自定义实体识别器
以下
list-entity-recognizers示例列出所有已创建自定义实体识别器。aws comprehend list-entity-recognizers输出:
{ "EntityRecognizerPropertiesList": [ { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/EntityRecognizer/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole", "VersionName": "1" }, { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer3", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T22:57:51.056000+00:00", "EndTime": "2023-06-14T23:14:13.894000+00:00", "TrainingStartTime": "2023-06-14T23:01:33.984000+00:00", "TrainingEndTime": "2023-06-14T23:13:02.984000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "DEVICE" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/raw_txt.csv", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity_list.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 4616, "NumberOfTestDocuments": 3489, "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "EntityTypes": [ { "Type": "DEVICE", "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "NumberOfTrainMentions": 2764 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的自定义实体识别。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListEntityRecognizers
。
-
以下代码示例演示了如何使用 list-events-detection-jobs。
- AWS CLI
-
列出所有事件检测作业
以下
list-events-detection-jobs示例列出所有异步事件检测作业。aws comprehend list-events-detection-jobs输出:
{ "EventsDetectionJobPropertiesList": [ { "JobId": "aa9593f9203e84f3ef032ce18EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/aa9593f9203e84f3ef032ce18EXAMPLE", "JobName": "events_job_1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:14:57.751000+00:00", "EndTime": "2023-06-12T19:21:04.962000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/1111222233333-EVENTS-aa9593f9203e84f3ef032ce18EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] }, { "JobId": "4a990a2f7e82adfca6e171135EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/4a990a2f7e82adfca6e171135EXAMPLE", "JobName": "events_job_2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:55:43.702000+00:00", "EndTime": "2023-06-12T20:03:49.893000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/1111222233333-EVENTS-4a990a2f7e82adfca6e171135EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListEventsDetectionJobs
。
-
以下代码示例演示了如何使用 list-flywheel-iteration-history。
- AWS CLI
-
列出所有飞轮迭代历史记录
以下
list-flywheel-iteration-history示例列出飞轮的所有迭代。aws comprehend list-flywheel-iteration-history --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel输出:
{ "FlywheelIterationPropertiesList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "20230619TEXAMPLE", "CreationTime": "2023-06-19T04:00:32.594000+00:00", "EndTime": "2023-06-19T04:00:49.248000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9876464664646313, "AveragePrecision": 0.9800000253081214, "AverageRecall": 0.9445600253081214, "AverageAccuracy": 0.9997281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-bucket/example-flywheel/schemaVersion=1/20230619TEXAMPLE/evaluation/20230619TEXAMPLE/" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "FlywheelIterationId": "20230616TEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/spamvshamclassify/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-bucket/example-flywheel-2/schemaVersion=1/20230616TEXAMPLE/evaluation/20230616TEXAMPLE/" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListFlywheelIterationHistory
。
-
以下代码示例演示了如何使用 list-flywheels。
- AWS CLI
-
列出所有飞轮
以下
list-flywheels示例列出所有已创建的飞轮。aws comprehend list-flywheels输出:
{ "FlywheelSummaryList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier/version/1", "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel-1/schemaVersion=1/20230616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2/version/1", "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel-2/schemaVersion=1/20220616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2022-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2022-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20220619T040032Z" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListFlywheels
。
-
以下代码示例演示了如何使用 list-key-phrases-detection-jobs。
- AWS CLI
-
列出所有关键短语检测作业
以下
list-key-phrases-detection-jobs示例列出所有正在进行和已完成的异步关键短语检测作业。aws comprehend list-key-phrases-detection-jobs输出:
{ "KeyPhrasesDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "keyphrasesanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T22:31:43.767000+00:00", "EndTime": "2023-06-08T22:39:52.565000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a33EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a33EXAMPLE", "JobName": "keyphrasesanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:57:52.154000+00:00", "EndTime": "2023-06-08T23:05:48.385000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a33EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a44EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a44EXAMPLE", "JobName": "keyphrasesanalysis3", "JobStatus": "FAILED", "Message": "NO_READ_ACCESS_TO_INPUT: The provided data access role does not have proper access to the input data.", "SubmitTime": "2023-06-09T16:47:04.029000+00:00", "EndTime": "2023-06-09T16:47:18.413000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a44EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListKeyPhrasesDetectionJobs
。
-
以下代码示例演示了如何使用 list-pii-entities-detection-jobs。
- AWS CLI
-
列出所有 PII 实体检测作业
以下
list-pii-entities-detection-jobs示例列出所有正在进行和已完成的异步 PII 检测作业。aws comprehend list-pii-entities-detection-jobs输出:
{ "PiiEntitiesDetectionJobPropertiesList": [ { "JobId": "6f9db0c42d0c810e814670ee4EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/6f9db0c42d0c810e814670ee4EXAMPLE", "JobName": "example-pii-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:02:46.241000+00:00", "EndTime": "2023-06-09T21:12:52.602000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/111122223333-PII-6f9db0c42d0c810e814670ee4EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" }, { "JobId": "d927562638cfa739331a99b3cEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/d927562638cfa739331a99b3cEXAMPLE", "JobName": "example-pii-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:20:58.211000+00:00", "EndTime": "2023-06-09T21:31:06.027000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-PII-d927562638cfa739331a99b3cEXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListPiiEntitiesDetectionJobs
。
-
以下代码示例演示了如何使用 list-sentiment-detection-jobs。
- AWS CLI
-
列出所有情绪检测作业
以下
list-sentiment-detection-jobs示例列出所有正在进行和已完成的异步情绪检测作业。aws comprehend list-sentiment-detection-jobs输出:
{ "SentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-sentiment-detection-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListSentimentDetectionJobs
。
-
以下代码示例演示了如何使用 list-tags-for-resource。
- AWS CLI
-
列出资源标签
以下
list-tags-for-resource示例列出 Amazon Comprehend 资源的标签。aws comprehend list-tags-for-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1输出:
{ "ResourceArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "Tags": [ { "Key": "Department", "Value": "Finance" }, { "Key": "location", "Value": "Seattle" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的标记资源。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListTagsForResource
。
-
以下代码示例演示了如何使用 list-targeted-sentiment-detection-jobs。
- AWS CLI
-
列出所有目标情绪检测作业
以下
list-targeted-sentiment-detection-jobs示例列出所有正在进行和已完成的异步目标情绪检测作业。aws comprehend list-targeted-sentiment-detection-jobs输出:
{ "TargetedSentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-targeted-sentiment-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-targeted-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListTargetedSentimentDetectionJobs
。
-
以下代码示例演示了如何使用 list-topics-detection-jobs。
- AWS CLI
-
列出所有主题检测作业
以下
list-topics-detection-jobs示例列出所有正在进行和已完成的异步主题检测作业。aws comprehend list-topics-detection-jobs输出:
{ "TopicsDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName" "topic-analysis-1" "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:40:35.384000+00:00", "EndTime": "2023-06-09T18:46:41.936000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "topic-analysis-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "EndTime": "2023-06-09T18:50:50.872000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE3", "JobName": "topic-analysis-2", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:50:56.737000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE3/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 ListTopicsDetectionJobs
。
-
以下代码示例演示了如何使用 put-resource-policy。
- AWS CLI
-
附加基于资源的策略
以下
put-resource-policy示例将基于资源的策略附加到模型,以便其他 AWS 账户导入。该策略附加到账户111122223333中的模型,并允许账户444455556666导入模型。aws comprehend put-resource-policy \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1\ --resource-policy '{"Version":"2012-10-17","Statement":[{"Effect":"Allow","Action":"comprehend:ImportModel","Resource":"*","Principal":{"AWS":["arn:aws:iam::444455556666:root"]}}]}'输出:
{ "PolicyRevisionId": "aaa111d069d07afaa2aa3106aEXAMPLE" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的在 AWS 账户之间复制自定义模型。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 PutResourcePolicy
。
-
以下代码示例演示了如何使用 start-document-classification-job。
- AWS CLI
-
列出文档分类作业
以下
start-document-classification-job示例以自定义模型启动文档分类作业,该作业对--input-data-config标签所指定地址处的所有文件都使用自定义模型。在此示例中,输入 S3 存储桶包含SampleSMStext1.txt、SampleSMStext2.txt、和SampleSMStext3.txt。该模型之前曾接受过关于垃圾邮件和非垃圾邮件,或“ham”、短信的文档分类训练。作业完成后,output.tar.gz将放置在--output-data-config标签指定的位置。output.tar.gz包含predictions.jsonl,其中列出了每个文档的分类。Json 输出在每个文件的一行上打印,但是为了便于阅读,此处设置了格式。aws comprehend start-document-classification-job \ --job-nameexampleclassificationjob\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket-INPUT/jobdata/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/12SampleSMStext1.txt的内容:"CONGRATULATIONS! TXT 2155550100 to win $5000"SampleSMStext2.txt的内容:"Hi, when do you want me to pick you up from practice?"SampleSMStext3.txt的内容:"Plz send bank account # to 2155550100 to claim prize!!"输出:
{ "JobId": "e758dd56b824aa717ceab551fEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/e758dd56b824aa717ceab551fEXAMPLE", "JobStatus": "SUBMITTED" }predictions.jsonl的内容:{"File": "SampleSMSText1.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]} {"File": "SampleSMStext2.txt", "Line": "0", "Classes": [{"Name": "ham", "Score": 0.9994}, {"Name": "spam", "Score": 0.0006}]} {"File": "SampleSMSText3.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]}有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的自定义分类。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StartDocumentClassificationJob
。
-
以下代码示例演示了如何使用 start-dominant-language-detection-job。
- AWS CLI
-
启动异步语言检测作业
以下
start-dominant-language-detection-job示例为位于--input-data-config标签指定地址的所有文件启动异步语言检测作业。此示例中的 S3 存储桶包含Sampletext1.txt。作业完成后,文件夹output将放置在--output-data-config标签指定的位置。该文件夹包含output.txt,其中包含每个文本文件的主要语言以及每个预测的预训练模型的置信度分数。aws comprehend start-dominant-language-detection-job \ --job-nameexample_language_analysis_job\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeenSampletext1.txt 的内容:
"Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }output.txt的内容:{"File": "Sampletext1.txt", "Languages": [{"LanguageCode": "en", "Score": 0.9913753867149353}], "Line": 0}有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StartDominantLanguageDetectionJob
。
-
以下代码示例演示了如何使用 start-entities-detection-job。
- AWS CLI
-
示例 1:使用预训练模型启动标准实体检测作业
以下
start-entities-detection-job示例为位于--input-data-config标签指定地址的所有文件启动异步实体检测作业。此示例中的 S3 存储桶包含Sampletext1.txt、Sampletext2.txt和Sampletext3.txt。作业完成后,文件夹output将放置在--output-data-config标签指定的位置。该文件夹包含output.txt,其中列出了在每个文本文件中检测到的所有命名实体,以及预训练模型对每个预测的置信度分数。每个输入文件的 Json 输出打印在一行上,但是为了便于阅读,此处设置了格式。aws comprehend start-entities-detection-job \ --job-nameentitiestest\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeenSampletext1.txt的内容:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."Sampletext2.txt的内容:"Dear Max, based on your autopay settings for your account example1.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "Sampletext3.txt的内容:"Jane, please submit any customer feedback from this weekend to AnySpa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }output.txt的内容,为便于阅读,采用了行间缩进:{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9994006636420306, "Text": "Zhang Wei", "Type": "PERSON" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9976647915128143, "Text": "John", "Type": "PERSON" }, { "BeginOffset": 33, "EndOffset": 67, "Score": 0.9984608700836206, "Text": "AnyCompany Financial Services, LLC", "Type": "ORGANIZATION" }, { "BeginOffset": 88, "EndOffset": 107, "Score": 0.9868521019555556, "Text": "1111-XXXX-1111-XXXX", "Type": "OTHER" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.998242565709204, "Text": "$24.53", "Type": "QUANTITY" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9993039263159287, "Text": "July 31st", "Type": "DATE" } ], "File": "SampleText1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Score": 0.9866232147545232, "Text": "Max", "Type": "PERSON" }, { "BeginOffset": 156, "EndOffset": 166, "Score": 0.9797723450933329, "Text": "XXXXXX1111", "Type": "OTHER" }, { "BeginOffset": 191, "EndOffset": 200, "Score": 0.9247838572396843, "Text": "XXXXX0000", "Type": "OTHER" } ], "File": "SampleText2.txt", "Line": 0 } { "Entities": [ { "Score": 0.9990532994270325, "Type": "PERSON", "Text": "Jane", "BeginOffset": 0, "EndOffset": 4 }, { "Score": 0.9519651532173157, "Type": "DATE", "Text": "this weekend", "BeginOffset": 47, "EndOffset": 59 }, { "Score": 0.5566426515579224, "Type": "ORGANIZATION", "Text": "AnySpa", "BeginOffset": 63, "EndOffset": 69 }, { "Score": 0.8059805631637573, "Type": "LOCATION", "Text": "123 Main St, Anywhere", "BeginOffset": 71, "EndOffset": 92 }, { "Score": 0.998830258846283, "Type": "PERSON", "Text": "Alice", "BeginOffset": 114, "EndOffset": 119 }, { "Score": 0.997818112373352, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 123, "EndOffset": 138 } ], "File": "SampleText3.txt", "Line": 0 }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
示例 2:启动自定义实体检测作业
以下
start-entities-detection-job示例为位于--input-data-config标签指定地址的所有文件启动异步自定义实体检测作业。在此示例中,S3 存储桶包含SampleFeedback1.txt、SampleFeedback2.txt和SampleFeedback3.txt。实体识别器模型经过客户支持反馈的训练,可以识别设备名称。作业完成后,文件夹output将放置在--output-data-config标签指定的位置。该文件夹包含output.txt,其中列出了在每个文本文件中检测到的所有命名实体,以及预训练模型对每个预测的置信度分数。每个文件的 Json 输出打印在一行上,但是为了便于阅读,此处设置了格式。aws comprehend start-entities-detection-job \ --job-namecustomentitiestest\ --entity-recognizer-arn"arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer"\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/jobdata/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arn"arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole"SampleFeedback1.txt的内容:"I've been on the AnyPhone app have had issues for 24 hours when trying to pay bill. Cannot make payment. Sigh. | Oh man! Lets get that app up and running. DM me, and we can get to work!"SampleFeedback2.txt的内容:"Hi, I have a discrepancy with my new bill. Could we get it sorted out? A rep added stuff I didnt sign up for when I did my AnyPhone 10 upgrade. | We can absolutely get this sorted!"SampleFeedback3.txt的内容:"Is the by 1 get 1 free AnySmartPhone promo still going on? | Hi Christian! It ended yesterday, send us a DM if you have any questions and we can take a look at your options!"输出:
{ "JobId": "019ea9edac758806850fa8a79ff83021", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/019ea9edac758806850fa8a79ff83021", "JobStatus": "SUBMITTED" }output.txt的内容,为便于阅读,采用了行间缩进:{ "Entities": [ { "BeginOffset": 17, "EndOffset": 25, "Score": 0.9999728210205924, "Text": "AnyPhone", "Type": "DEVICE" } ], "File": "SampleFeedback1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 123, "EndOffset": 133, "Score": 0.9999892116761524, "Text": "AnyPhone 10", "Type": "DEVICE" } ], "File": "SampleFeedback2.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 23, "EndOffset": 35, "Score": 0.9999971389852362, "Text": "AnySmartPhone", "Type": "DEVICE" } ], "File": "SampleFeedback3.txt", "Line": 0 }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的自定义实体识别。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StartEntitiesDetectionJob
。
-
以下代码示例演示了如何使用 start-events-detection-job。
- AWS CLI
-
启动异步事件检测作业
以下
start-events-detection-job示例为位于--input-data-config标签指定地址的所有文件启动异步事件检测作业。可能的目标事件类型包括BANKRUPCTY、EMPLOYMENT、CORPORATE_ACQUISITION、INVESTMENT_GENERAL、CORPORATE_MERGER、IPO、RIGHTS_ISSUE、SECONDARY_OFFERING、SHELF_OFFERING、TENDER_OFFERING和STOCK_SPLIT。此示例中的 S3 存储桶包含SampleText1.txt、SampleText2.txt和SampleText3.txt。作业完成后,文件夹output将放置在--output-data-config标签指定的位置。该文件夹包含SampleText1.txt.out、SampleText2.txt.out和SampleText3.txt.out。每个文件的 JSON 输出打印在一行上,但是为了便于阅读,此处设置了格式。aws comprehend start-events-detection-job \ --job-nameevents-detection-1\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/EventsData"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole\ --language-codeen\ --target-event-types"BANKRUPTCY""EMPLOYMENT""CORPORATE_ACQUISITION""CORPORATE_MERGER""INVESTMENT_GENERAL"SampleText1.txt的内容:"Company AnyCompany grew by increasing sales and through acquisitions. After purchasing competing firms in 2020, AnyBusiness, a part of the AnyBusinessGroup, gave Jane Does firm a going rate of one cent a gallon or forty-two cents a barrel."SampleText2.txt的内容:"In 2021, AnyCompany officially purchased AnyBusiness for 100 billion dollars, surprising and exciting the shareholders."SampleText3.txt的内容:"In 2022, AnyCompany stock crashed 50. Eventually later that year they filed for bankruptcy."输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }SampleText1.txt.out的内容,为便于阅读,采用了行间缩进:{ "Entities": [ { "Mentions": [ { "BeginOffset": 8, "EndOffset": 18, "Score": 0.99977, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 112, "EndOffset": 123, "Score": 0.999747, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 0.979826 }, { "BeginOffset": 171, "EndOffset": 175, "Score": 0.999615, "Text": "firm", "Type": "ORGANIZATION", "GroupScore": 0.871647 } ] }, { "Mentions": [ { "BeginOffset": 97, "EndOffset": 102, "Score": 0.987687, "Text": "firms", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 103, "EndOffset": 110, "Score": 0.999458, "Text": "in 2020", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 160, "EndOffset": 168, "Score": 0.999649, "Text": "John Doe", "Type": "PERSON", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 0, "Role": "INVESTOR", "Score": 0.99977 } ], "Triggers": [ { "BeginOffset": 56, "EndOffset": 68, "Score": 0.999967, "Text": "acquisitions", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] }, { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 1, "Role": "INVESTEE", "Score": 0.987687 }, { "EntityIndex": 2, "Role": "DATE", "Score": 0.999458 }, { "EntityIndex": 3, "Role": "INVESTOR", "Score": 0.999649 } ], "Triggers": [ { "BeginOffset": 76, "EndOffset": 86, "Score": 0.999973, "Text": "purchasing", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText1.txt", "Line": 0 }SampleText2.txt.out的内容:{ "Entities": [ { "Mentions": [ { "BeginOffset": 0, "EndOffset": 7, "Score": 0.999473, "Text": "In 2021", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999636, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 45, "EndOffset": 56, "Score": 0.999712, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 61, "EndOffset": 80, "Score": 0.998886, "Text": "100 billion dollars", "Type": "MONETARY_VALUE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 3, "Role": "AMOUNT", "Score": 0.998886 }, { "EntityIndex": 2, "Role": "INVESTEE", "Score": 0.999712 }, { "EntityIndex": 0, "Role": "DATE", "Score": 0.999473 }, { "EntityIndex": 1, "Role": "INVESTOR", "Score": 0.999636 } ], "Triggers": [ { "BeginOffset": 31, "EndOffset": 40, "Score": 0.99995, "Text": "purchased", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText2.txt", "Line": 0 }SampleText3.txt.out的内容:{ "Entities": [ { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999774, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 66, "EndOffset": 70, "Score": 0.995717, "Text": "they", "Type": "ORGANIZATION", "GroupScore": 0.997626 } ] }, { "Mentions": [ { "BeginOffset": 50, "EndOffset": 65, "Score": 0.999656, "Text": "later that year", "Type": "DATE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "BANKRUPTCY", "Arguments": [ { "EntityIndex": 1, "Role": "DATE", "Score": 0.999656 }, { "EntityIndex": 0, "Role": "FILER", "Score": 0.995717 } ], "Triggers": [ { "BeginOffset": 81, "EndOffset": 91, "Score": 0.999936, "Text": "bankruptcy", "Type": "BANKRUPTCY", "GroupScore": 1 } ] } ], "File": "SampleText3.txt", "Line": 0 }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StartEventsDetectionJob
。
-
以下代码示例演示了如何使用 start-flywheel-iteration。
- AWS CLI
-
启动飞轮迭代
以下
start-flywheel-iteration示例启动飞轮迭代。此操作使用飞轮中的任何新数据集来训练新的模型版本。aws comprehend start-flywheel-iteration \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel输出:
{ "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "12345123TEXAMPLE" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StartFlywheelIteration
。
-
以下代码示例演示了如何使用 start-key-phrases-detection-job。
- AWS CLI
-
启动关键短语检测作业
以下
start-key-phrases-detection-job示例为位于--input-data-config标签指定地址的所有文件启动异步关键短语检测作业。此示例中的 S3 存储桶包含Sampletext1.txt、Sampletext2.txt和Sampletext3.txt。作业完成后,文件夹output将放置在--output-data-config标签指定的位置。该文件夹包含output.txt,其中包含了在每个文本文件中检测到的所有关键短语,以及预训练模型对每个预测的置信度分数。每个文件的 Json 输出打印在一行上,但是为了便于阅读,此处设置了格式。aws comprehend start-key-phrases-detection-job \ --job-namekeyphrasesanalysistest1\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arn"arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role"\ --language-codeenSampletext1.txt的内容:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."Sampletext2.txt的内容:"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "Sampletext3.txt的内容:"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }output.txt的内容,为便于阅读,采用了行间缩进:{ "File": "SampleText1.txt", "KeyPhrases": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9748965572679326, "Text": "Zhang Wei" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9997344722354619, "Text": "John" }, { "BeginOffset": 28, "EndOffset": 62, "Score": 0.9843791074032948, "Text": "Your AnyCompany Financial Services" }, { "BeginOffset": 64, "EndOffset": 107, "Score": 0.8976122401721824, "Text": "LLC credit card account 1111-XXXX-1111-XXXX" }, { "BeginOffset": 112, "EndOffset": 129, "Score": 0.9999612982629748, "Text": "a minimum payment" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.99975728947036, "Text": "$24.53" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9940866241449973, "Text": "July 31st" } ], "Line": 0 } { "File": "SampleText2.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.9974021100118472, "Text": "Dear Max" }, { "BeginOffset": 19, "EndOffset": 40, "Score": 0.9961120519515884, "Text": "your autopay settings" }, { "BeginOffset": 45, "EndOffset": 78, "Score": 0.9980620070116009, "Text": "your account Internet.org account" }, { "BeginOffset": 97, "EndOffset": 109, "Score": 0.999919660140754, "Text": "your payment" }, { "BeginOffset": 113, "EndOffset": 125, "Score": 0.9998370719754205, "Text": "the due date" }, { "BeginOffset": 131, "EndOffset": 166, "Score": 0.9955068678502509, "Text": "your bank account number XXXXXX1111" }, { "BeginOffset": 172, "EndOffset": 200, "Score": 0.8653433315829526, "Text": "the routing number XXXXX0000" } ], "Line": 0 } { "File": "SampleText3.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 4, "Score": 0.9142947833681668, "Text": "Jane" }, { "BeginOffset": 20, "EndOffset": 41, "Score": 0.9984325676596763, "Text": "any customer feedback" }, { "BeginOffset": 47, "EndOffset": 59, "Score": 0.9998782448150636, "Text": "this weekend" }, { "BeginOffset": 63, "EndOffset": 75, "Score": 0.99866741830757, "Text": "Sunshine Spa" }, { "BeginOffset": 77, "EndOffset": 88, "Score": 0.9695803485466054, "Text": "123 Main St" }, { "BeginOffset": 108, "EndOffset": 116, "Score": 0.9997065928550928, "Text": "comments" }, { "BeginOffset": 120, "EndOffset": 125, "Score": 0.9993466833825161, "Text": "Alice" }, { "BeginOffset": 129, "EndOffset": 144, "Score": 0.9654563612885667, "Text": "AnySpa@example.com" } ], "Line": 0 }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StartKeyPhrasesDetectionJob
。
-
以下代码示例演示了如何使用 start-pii-entities-detection-job。
- AWS CLI
-
启动异步 PII 检测作业
以下
start-pii-entities-detection-job示例为位于--input-data-config标签指定地址的所有文件启动异步个人身份信息(PII)实体检测作业。此示例中的 S3 存储桶包含Sampletext1.txt、Sampletext2.txt和Sampletext3.txt。作业完成后,文件夹output将放置在--output-data-config标签指定的位置。该文件夹包含SampleText1.txt.out、SampleText2.txt.out和SampleText3.txt.out,列出了每个文本文件中的命名实体。每个文件的 Json 输出打印在一行上,但是为了便于阅读,此处设置了格式。aws comprehend start-pii-entities-detection-job \ --job-nameentities_test\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeen\ --modeONLY_OFFSETSSampletext1.txt的内容:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."Sampletext2.txt的内容:"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "Sampletext3.txt的内容:"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }SampleText1.txt.out的内容,为便于阅读,采用了行间缩进:{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Type": "NAME", "Score": 0.9998490510222595 }, { "BeginOffset": 22, "EndOffset": 26, "Type": "NAME", "Score": 0.9998937958019426 }, { "BeginOffset": 88, "EndOffset": 107, "Type": "CREDIT_DEBIT_NUMBER", "Score": 0.9554297245278491 }, { "BeginOffset": 155, "EndOffset": 164, "Type": "DATE_TIME", "Score": 0.9999720462925257 } ], "File": "SampleText1.txt", "Line": 0 }SampleText2.txt.out的内容,为便于阅读,采用了行间缩进:{ "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Type": "NAME", "Score": 0.9994390774924007 }, { "BeginOffset": 58, "EndOffset": 70, "Type": "URL", "Score": 0.9999958276922101 }, { "BeginOffset": 156, "EndOffset": 166, "Type": "BANK_ACCOUNT_NUMBER", "Score": 0.9999721058045592 }, { "BeginOffset": 191, "EndOffset": 200, "Type": "BANK_ROUTING", "Score": 0.9998968945989909 } ], "File": "SampleText2.txt", "Line": 0 }SampleText3.txt.out的内容,为便于阅读,采用了行间缩进:{ "Entities": [ { "BeginOffset": 0, "EndOffset": 4, "Type": "NAME", "Score": 0.999949934606805 }, { "BeginOffset": 77, "EndOffset": 88, "Type": "ADDRESS", "Score": 0.9999035300466904 }, { "BeginOffset": 120, "EndOffset": 125, "Type": "NAME", "Score": 0.9998203838716296 }, { "BeginOffset": 129, "EndOffset": 144, "Type": "EMAIL", "Score": 0.9998313473105228 } ], "File": "SampleText3.txt", "Line": 0 }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StartPiiEntitiesDetectionJob
。
-
以下代码示例演示了如何使用 start-sentiment-detection-job。
- AWS CLI
-
启动异步情绪分析作业
以下
start-sentiment-detection-job示例为位于--input-data-config标签指定地址的所有文件启动异步情绪分析检测作业。此示例中的 S3 存储桶文件夹包含SampleMovieReview1.txt、SampleMovieReview2.txt和SampleMovieReview3.txt。作业完成后,文件夹output将放置在--output-data-config标签指定的位置。该文件夹包含output.txt,其中包含了每个文本文件中的主导情绪,以及预训练模型对每个预测的置信度分数。每个文件的 Json 输出打印在一行上,但是为了便于阅读,此处设置了格式。aws comprehend start-sentiment-detection-job \ --job-nameexample-sentiment-detection-job\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/MovieData"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-roleSampleMovieReview1.txt的内容:"The film, AnyMovie2, is fairly predictable and just okay."SampleMovieReview2.txt的内容:"AnyMovie2 is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."SampleMovieReview3.txt的内容:"Don't get fooled by the 'awards' for AnyMovie2. All parts of the film were poorly stolen from other modern directors."输出:
{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }output.txt的内容,为便于阅读,采用了行间缩进:{ "File": "SampleMovieReview1.txt", "Line": 0, "Sentiment": "MIXED", "SentimentScore": { "Mixed": 0.6591159105300903, "Negative": 0.26492202281951904, "Neutral": 0.035430654883384705, "Positive": 0.04053137078881264 } } { "File": "SampleMovieReview2.txt", "Line": 0, "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000008718466233403888, "Negative": 0.00006134175055194646, "Neutral": 0.0002941041602753103, "Positive": 0.9996358156204224 } } { "File": "SampleMovieReview3.txt", "Line": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Mixed": 0.004146667663007975, "Negative": 0.9645107984542847, "Neutral": 0.016559595242142677, "Positive": 0.014782938174903393 } } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StartSentimentDetectionJob
。
-
以下代码示例演示了如何使用 start-targeted-sentiment-detection-job。
- AWS CLI
-
启动异步目标情绪分析作业
以下
start-targeted-sentiment-detection-job示例为位于--input-data-config标签指定地址的所有文件启动异步目标情绪分析检测作业。此示例中的 S3 存储桶文件夹包含SampleMovieReview1.txt、SampleMovieReview2.txt和SampleMovieReview3.txt。作业完成后,output.tar.gz将放置在--output-data-config标签指定的位置。output.tar.gz包含文件SampleMovieReview1.txt.out、SampleMovieReview2.txt.out和SampleMovieReview3.txt.out,每个文件都包含单个输入文本文件的所有命名实体和关联情绪。aws comprehend start-targeted-sentiment-detection-job \ --job-nametargeted_movie_review_analysis1\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/MovieData"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-roleSampleMovieReview1.txt的内容:"The film, AnyMovie, is fairly predictable and just okay."SampleMovieReview2.txt的内容:"AnyMovie is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."SampleMovieReview3.txt的内容:"Don't get fooled by the 'awards' for AnyMovie. All parts of the film were poorly stolen from other modern directors."输出:
{ "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }SampleMovieReview1.txt.out的内容,为便于阅读,采用了行间缩进:{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 4, "EndOffset": 8, "Score": 0.994972, "GroupScore": 1, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 10, "EndOffset": 18, "Score": 0.631368, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.001729, "Negative": 0.000001, "Neutral": 0.000318, "Positive": 0.997952 } } } ] } ], "File": "SampleMovieReview1.txt", "Line": 0 }SampleMovieReview2.txt.out的内容,为便于阅读,采用了行间缩进:{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.854024, "GroupScore": 1, "Text": "AnyMovie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000007, "Positive": 0.999993 } } }, { "BeginOffset": 104, "EndOffset": 109, "Score": 0.999129, "GroupScore": 0.502937, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0, "Positive": 1 } } }, { "BeginOffset": 33, "EndOffset": 37, "Score": 0.999823, "GroupScore": 0.999252, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000001, "Positive": 0.999999 } } } ] }, { "DescriptiveMentionIndex": [ 0, 1, 2 ], "Mentions": [ { "BeginOffset": 43, "EndOffset": 44, "Score": 0.999997, "GroupScore": 1, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 80, "EndOffset": 81, "Score": 0.999996, "GroupScore": 0.52523, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 67, "EndOffset": 68, "Score": 0.999994, "GroupScore": 0.999499, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 75, "EndOffset": 78, "Score": 0.999978, "GroupScore": 1, "Text": "kid", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview2.txt", "Line": 0 }SampleMovieReview3.txt.out的内容,为便于阅读,采用了行间缩进:{ "Entities": [ { "DescriptiveMentionIndex": [ 1 ], "Mentions": [ { "BeginOffset": 64, "EndOffset": 68, "Score": 0.992953, "GroupScore": 0.999814, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000004, "Negative": 0.010425, "Neutral": 0.989543, "Positive": 0.000027 } } }, { "BeginOffset": 37, "EndOffset": 45, "Score": 0.999782, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000095, "Negative": 0.039847, "Neutral": 0.000673, "Positive": 0.959384 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 47, "EndOffset": 50, "Score": 0.999991, "GroupScore": 1, "Text": "All", "Type": "QUANTITY", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000001, "Negative": 0.000001, "Neutral": 0.999998, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 106, "EndOffset": 115, "Score": 0.542083, "GroupScore": 1, "Text": "directors", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview3.txt", "Line": 0 }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StartTargetedSentimentDetectionJob
。
-
以下代码示例演示了如何使用 start-topics-detection-job。
- AWS CLI
-
启动主题检测分析作业
以下
start-topics-detection-job示例为位于--input-data-config标签指定地址的所有文件启动异步主题检测作业。作业完成后,文件夹output将放置在--ouput-data-config标签指定的位置。output包含 topic-terms.csv 和 doc-topics.csv。第一个输出文件 topic-terms.csv 是集合中的主题列表。对于每个主题,默认情况下,该列表按权重排列主题列出根据其的热门术语。第二个文件doc-topics.csv列出了与主题相关的文档以及与该主题相关的文档比例。aws comprehend start-topics-detection-job \ --job-nameexample_topics_detection_job\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeen输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的主题建模。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StartTopicsDetectionJob
。
-
以下代码示例演示了如何使用 stop-dominant-language-detection-job。
- AWS CLI
-
停止异步主要语言检测作业
以下
stop-dominant-language-detection-job示例停止正在进行的异步主要语言检测作业。如果当前作业状态为IN_PROGRESS,则该作业被标记为终止并进入STOP_REQUESTED状态。如果作业在可以停止之前就完成了,则会进入COMPLETED状态。aws comprehend stop-dominant-language-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StopDominantLanguageDetectionJob
。
-
以下代码示例演示了如何使用 stop-entities-detection-job。
- AWS CLI
-
停止异步实体检测作业
以下
stop-entities-detection-job示例停止正在进行的异步实体检测作业。如果当前作业状态为IN_PROGRESS,则该作业被标记为终止并进入STOP_REQUESTED状态。如果作业在可以停止之前就完成了,则会进入COMPLETED状态。aws comprehend stop-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StopEntitiesDetectionJob
。
-
以下代码示例演示了如何使用 stop-events-detection-job。
- AWS CLI
-
停止异步事件检测作业
以下
stop-events-detection-job示例停止正在进行的异步事件检测作业。如果当前作业状态为IN_PROGRESS,则该作业被标记为终止并进入STOP_REQUESTED状态。如果作业在可以停止之前就完成了,则会进入COMPLETED状态。aws comprehend stop-events-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StopEventsDetectionJob
。
-
以下代码示例演示了如何使用 stop-key-phrases-detection-job。
- AWS CLI
-
停止异步关键短语检测作业
以下
stop-key-phrases-detection-job示例停止正在进行的异步关键短语检测作业。如果当前作业状态为IN_PROGRESS,则该作业被标记为终止并进入STOP_REQUESTED状态。如果作业在可以停止之前就完成了,则会进入COMPLETED状态。aws comprehend stop-key-phrases-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StopKeyPhrasesDetectionJob
。
-
以下代码示例演示了如何使用 stop-pii-entities-detection-job。
- AWS CLI
-
停止异步 PII 实体检测作业
以下
stop-pii-entities-detection-job示例停止正在进行的异步 PII 实体检测作业。如果当前作业状态为IN_PROGRESS,则该作业被标记为终止并进入STOP_REQUESTED状态。如果作业在可以停止之前就完成了,则会进入COMPLETED状态。aws comprehend stop-pii-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StopPiiEntitiesDetectionJob
。
-
以下代码示例演示了如何使用 stop-sentiment-detection-job。
- AWS CLI
-
停止异步情绪检测作业
以下
stop-sentiment-detection-job示例停止正在进行的异步情绪检测作业。如果当前作业状态为IN_PROGRESS,则该作业被标记为终止并进入STOP_REQUESTED状态。如果作业在可以停止之前就完成了,则会进入COMPLETED状态。aws comprehend stop-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StopSentimentDetectionJob
。
-
以下代码示例演示了如何使用 stop-targeted-sentiment-detection-job。
- AWS CLI
-
停止异步目标情绪检测作业
以下
stop-targeted-sentiment-detection-job示例停止正在进行的异步目标情绪检测作业。如果当前作业状态为IN_PROGRESS,则该作业被标记为终止并进入STOP_REQUESTED状态。如果作业在可以停止之前就完成了,则会进入COMPLETED状态。aws comprehend stop-targeted-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLE输出:
{ "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的 Amazon Comprehend 洞察的异步分析。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StopTargetedSentimentDetectionJob
。
-
以下代码示例演示了如何使用 stop-training-document-classifier。
- AWS CLI
-
停止训练文档分类器模型
以下
stop-training-document-classifier示例停止训练正在进行的文档分类器模型。aws comprehend stop-training-document-classifier --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的创建和管理自定义模型。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StopTrainingDocumentClassifier
。
-
以下代码示例演示了如何使用 stop-training-entity-recognizer。
- AWS CLI
-
停止训练实体识别器模型
以下
stop-training-entity-recognizer示例停止训练正在进行的实体识别器模型。aws comprehend stop-training-entity-recognizer --entity-recognizer-arn"arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/examplerecognizer1"此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的创建和管理自定义模型。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 StopTrainingEntityRecognizer
。
-
以下代码示例演示了如何使用 tag-resource。
- AWS CLI
-
示例 1:标记资源
以下
tag-resource示例为 Amazon Comprehend 资源添加一个标签。aws comprehend tag-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1\ --tagsKey=Location,Value=Seattle此命令没有输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的标记资源。
示例 2:为资源添加多个标记
以下
tag-resource示例为 Amazon Comprehend 资源添加多个标签。aws comprehend tag-resource \ --resource-arn"arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1"\ --tagsKey=location,Value=SeattleKey=Department,Value=Finance此命令没有输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的标记资源。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 TagResource
。
-
以下代码示例演示了如何使用 untag-resource。
- AWS CLI
-
示例 1:从资源中移除单个标签
以下
untag-resource示例从 Amazon Comprehend 资源中移除一个标签。aws comprehend untag-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1--tag-keysLocation此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的标记资源。
示例 2:从资源中删除多个标签
以下
untag-resource示例从 Amazon Comprehend 资源中移除多个标签。aws comprehend untag-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1--tag-keysLocationDepartment此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的标记资源。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 UntagResource
。
-
以下代码示例演示了如何使用 update-endpoint。
- AWS CLI
-
示例 1:更新端点的推理单元
以下
update-endpoint示例更新有关端点的信息。在此示例中,增加了推理单元的数量。aws comprehend update-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint--desired-inference-units2此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的管理 Amazon Comprehend 端点。
示例 2:更新端点的活动模型
以下
update-endpoint示例更新有关端点的信息。在此示例中,更改了活动模型。aws comprehend update-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint--active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-new此命令不生成任何输出。
有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的管理 Amazon Comprehend 端点。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 UpdateEndpoint
。
-
以下代码示例演示了如何使用 update-flywheel。
- AWS CLI
-
更新飞轮配置
以下
update-flywheel示例更新飞轮配置。在此示例中,更新了飞轮的活动模型。aws comprehend update-flywheel \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1\ --active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model输出:
{ "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS" } }, "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" } }有关更多信息,请参阅《Amazon Comprehend 开发人员指南》中的飞轮概述。
-
有关 API 详细信息,请参阅《AWS CLI 命令参考》中的 UpdateFlywheel
。
-