選取您的 Cookie 偏好設定

我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。

如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。

HyperParameterTuningResourceConfig

焦點模式
HyperParameterTuningResourceConfig - Amazon SageMaker
此頁面尚未翻譯為您的語言。 請求翻譯

The configuration of resources, including compute instances and storage volumes for use in training jobs launched by hyperparameter tuning jobs. HyperParameterTuningResourceConfig is similar to ResourceConfig, but has the additional InstanceConfigs and AllocationStrategy fields to allow for flexible instance management. Specify one or more instance types, count, and the allocation strategy for instance selection.

Note

HyperParameterTuningResourceConfig supports the capabilities of ResourceConfig with the exception of KeepAlivePeriodInSeconds. Hyperparameter tuning jobs use warm pools by default, which reuse clusters between training jobs.

Contents

AllocationStrategy

The strategy that determines the order of preference for resources specified in InstanceConfigs used in hyperparameter optimization.

Type: String

Valid Values: Prioritized

Required: No

InstanceConfigs

A list containing the configuration(s) for one or more resources for processing hyperparameter jobs. These resources include compute instances and storage volumes to use in model training jobs launched by hyperparameter tuning jobs. The AllocationStrategy controls the order in which multiple configurations provided in InstanceConfigs are used.

Note

If you only want to use a single instance configuration inside the HyperParameterTuningResourceConfig API, do not provide a value for InstanceConfigs. Instead, use InstanceType, VolumeSizeInGB and InstanceCount. If you use InstanceConfigs, do not provide values for InstanceType, VolumeSizeInGB or InstanceCount.

Type: Array of HyperParameterTuningInstanceConfig objects

Array Members: Minimum number of 1 item. Maximum number of 6 items.

Required: No

InstanceCount

The number of compute instances of type InstanceType to use. For distributed training, select a value greater than 1.

Type: Integer

Valid Range: Minimum value of 0.

Required: No

InstanceType

The instance type used to run hyperparameter optimization tuning jobs. See descriptions of instance types for more information.

Type: String

Valid Values: ml.m4.xlarge | ml.m4.2xlarge | ml.m4.4xlarge | ml.m4.10xlarge | ml.m4.16xlarge | ml.g4dn.xlarge | ml.g4dn.2xlarge | ml.g4dn.4xlarge | ml.g4dn.8xlarge | ml.g4dn.12xlarge | ml.g4dn.16xlarge | ml.m5.large | ml.m5.xlarge | ml.m5.2xlarge | ml.m5.4xlarge | ml.m5.12xlarge | ml.m5.24xlarge | ml.c4.xlarge | ml.c4.2xlarge | ml.c4.4xlarge | ml.c4.8xlarge | ml.p2.xlarge | ml.p2.8xlarge | ml.p2.16xlarge | ml.p3.2xlarge | ml.p3.8xlarge | ml.p3.16xlarge | ml.p3dn.24xlarge | ml.p4d.24xlarge | ml.p4de.24xlarge | ml.p5.48xlarge | ml.p5e.48xlarge | ml.p5en.48xlarge | ml.c5.xlarge | ml.c5.2xlarge | ml.c5.4xlarge | ml.c5.9xlarge | ml.c5.18xlarge | ml.c5n.xlarge | ml.c5n.2xlarge | ml.c5n.4xlarge | ml.c5n.9xlarge | ml.c5n.18xlarge | ml.g5.xlarge | ml.g5.2xlarge | ml.g5.4xlarge | ml.g5.8xlarge | ml.g5.16xlarge | ml.g5.12xlarge | ml.g5.24xlarge | ml.g5.48xlarge | ml.g6.xlarge | ml.g6.2xlarge | ml.g6.4xlarge | ml.g6.8xlarge | ml.g6.16xlarge | ml.g6.12xlarge | ml.g6.24xlarge | ml.g6.48xlarge | ml.g6e.xlarge | ml.g6e.2xlarge | ml.g6e.4xlarge | ml.g6e.8xlarge | ml.g6e.16xlarge | ml.g6e.12xlarge | ml.g6e.24xlarge | ml.g6e.48xlarge | ml.trn1.2xlarge | ml.trn1.32xlarge | ml.trn1n.32xlarge | ml.trn2.48xlarge | ml.m6i.large | ml.m6i.xlarge | ml.m6i.2xlarge | ml.m6i.4xlarge | ml.m6i.8xlarge | ml.m6i.12xlarge | ml.m6i.16xlarge | ml.m6i.24xlarge | ml.m6i.32xlarge | ml.c6i.xlarge | ml.c6i.2xlarge | ml.c6i.8xlarge | ml.c6i.4xlarge | ml.c6i.12xlarge | ml.c6i.16xlarge | ml.c6i.24xlarge | ml.c6i.32xlarge | ml.r5d.large | ml.r5d.xlarge | ml.r5d.2xlarge | ml.r5d.4xlarge | ml.r5d.8xlarge | ml.r5d.12xlarge | ml.r5d.16xlarge | ml.r5d.24xlarge | ml.t3.medium | ml.t3.large | ml.t3.xlarge | ml.t3.2xlarge | ml.r5.large | ml.r5.xlarge | ml.r5.2xlarge | ml.r5.4xlarge | ml.r5.8xlarge | ml.r5.12xlarge | ml.r5.16xlarge | ml.r5.24xlarge

Required: No

VolumeKmsKeyId

A key used by AWS Key Management Service to encrypt data on the storage volume attached to the compute instances used to run the training job. You can use either of the following formats to specify a key.

KMS Key ID:

"1234abcd-12ab-34cd-56ef-1234567890ab"

Amazon Resource Name (ARN) of a KMS key:

"arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"

Some instances use local storage, which use a hardware module to encrypt storage volumes. If you choose one of these instance types, you cannot request a VolumeKmsKeyId. For a list of instance types that use local storage, see instance store volumes. For more information about AWS Key Management Service, see KMS encryption for more information.

Type: String

Length Constraints: Maximum length of 2048.

Pattern: ^[a-zA-Z0-9:/_-]*$

Required: No

VolumeSizeInGB

The volume size in GB for the storage volume to be used in processing hyperparameter optimization jobs (optional). These volumes store model artifacts, incremental states and optionally, scratch space for training algorithms. Do not provide a value for this parameter if a value for InstanceConfigs is also specified.

Some instance types have a fixed total local storage size. If you select one of these instances for training, VolumeSizeInGB cannot be greater than this total size. For a list of instance types with local instance storage and their sizes, see instance store volumes.

Note

SageMaker supports only the General Purpose SSD (gp2) storage volume type.

Type: Integer

Valid Range: Minimum value of 0.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

在本頁面

隱私權網站條款Cookie 偏好設定
© 2025, Amazon Web Services, Inc.或其附屬公司。保留所有權利。