選取您的 Cookie 偏好設定

我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。

如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。

MLCOST-09: Select optimal computing instance size - Machine Learning Lens
此頁面尚未翻譯為您的語言。 請求翻譯

MLCOST-09: Select optimal computing instance size

Right size the training instances according to the ML algorithm used for maximum efficiency and cost reduction. Use debugging capabilities to understand the right resources to use during training. Simple models might not train faster on larger instances because they might not be able to benefit from additional compute resources. These models might even train slower due to the high GPU communication overhead. Start with smaller instances and scale as necessary.

Implementation plan

  • Use Amazon SageMaker AI Experiments - Amazon EC2 provides a wide selection of instance types optimized to fit different use cases. Machine learning workloads can use either a CPU or a GPU instance. Select an instance type from the available EC2 instance types depending on the needs of your ML algorithm. Experiment with both CPU and GPU instances to learn which one gives you the best cost configuration. Amazon SageMaker AI lets you use a single instance or a distributed cluster of GPU instances. Use Amazon SageMaker AI Experiments to evaluate alternative options, and identify the size resulting in optimal outcome. With the pricing broken down by time and resources, you can optimize the cost of Amazon SageMaker AI and only pay for what is needed.

  • Use Amazon SageMaker AI Debugger - Amazon SageMaker AI Debugger automatically monitors the utilization of system resources, such as GPUs, CPUs, network, and memory, and profiles your training jobs to collect detailed ML framework metrics. You can inspect all resource metrics visually through SageMaker AI Studio and take corrective actions if the resource is under-utilized to optimize cost. 

Documents

Blogs

Videos

隱私權網站條款Cookie 偏好設定
© 2025, Amazon Web Services, Inc.或其附屬公司。保留所有權利。