Getting started with Aurora zero-ETL integrations with Amazon Redshift - Amazon Aurora

Getting started with Aurora zero-ETL integrations with Amazon Redshift

Before you create a zero-ETL integration with Amazon Redshift, configure your Aurora DB cluster and your Amazon Redshift data warehouse with the required parameters and permissions. During setup, you'll complete the following steps:

After you complete these tasks, continue to Creating Aurora zero-ETL integrations with Amazon Redshift.

You can use the AWS SDKs to automate the setup process for you. For more information, see Set up an integration using the AWS SDKs.

Tip

You can have RDS complete these setup steps for you while you're creating the integration, rather than performing them manually. To immediately start creating an integration, see Creating Aurora zero-ETL integrations with Amazon Redshift.

Step 1: Create a custom DB cluster parameter group

Aurora zero-ETL integrations with Amazon Redshift require specific values for the DB cluster parameters that control replication. Specifically, Aurora MySQL requires enhanced binlog (aurora_enhanced_binlog), and Aurora PostgreSQL requires enhanced logical replication (aurora.enhanced_logical_replication).

To configure binary logging or logical replication, you must first create a custom DB cluster parameter group, and then associate it with the source DB cluster.

Aurora MySQL (aurora-mysql8.0 family):

  • aurora_enhanced_binlog=1

  • binlog_backup=0

  • binlog_format=ROW

  • binlog_replication_globaldb=0

  • binlog_row_image=full

  • binlog_row_metadata=full

In addition, make sure that the binlog_transaction_compression parameter is not set to ON, and that the binlog_row_value_options parameter is not set to PARTIAL_JSON.

For more information about Aurora MySQL enhanced binlog, see Setting up enhanced binlog for Aurora MySQL.

Aurora PostgreSQL (aurora-postgresql16 family):

  • rds.logical_replication=1

  • aurora.enhanced_logical_replication=1

  • aurora.logical_replication_backup=0

  • aurora.logical_replication_globaldb=0

Enabling enhanced logical replication (aurora.enhanced_logical_replication) will always write all column values to the write ahead log (WAL) even if REPLICA IDENTITY FULL isn't enabled. This might increase the IOPS for your source DB cluster.

Important

If you disable the aurora.enhanced_logical_replication DB cluster parameter after the integration is created, the primary DB instance invalidates all logical replication slots. This stops replication from the source to the target, and you must recreate replication slots on the primary DB instance. To prevent interruptions, keep the parameter consistently enabled during replication.

Step 2: Select or create a source DB cluster

After you create a custom DB cluster parameter group, choose or create an Aurora DB cluster. This cluster will be the source of data replication to Amazon Redshift. You can specify a DB cluster that uses provisioned DB instances or Aurora Serverless v2 DB instances as the source. For instructions to create a DB cluster, see Creating an Amazon Aurora DB cluster or Creating a DB cluster that uses Aurora Serverless v2.

The database must be running a supported DB engine version. For a list of supported versions, see Supported Regions and Aurora DB engines for zero-ETL integrations with Amazon Redshift.

When you create the database, under Additional configuration, change the default DB cluster parameter group to the custom parameter group that you created in the previous step.

Note

If you associate the parameter group with the DB cluster after the cluster is already created, you must reboot the primary DB instance in the cluster to apply the changes before you can create a zero-ETL integration. For instructions, see Rebooting an Amazon Aurora DB cluster or Amazon Aurora DB instance.

Step 3: Create a target Amazon Redshift data warehouse

After you create your source DB cluster, you must create and configure a target data warehouse in Amazon Redshift. The data warehouse must meet the following requirements:

  • Using an RA3 node type with at least two nodes, or Redshift Serverless.

  • Encrypted (if using a provisioned cluster). For more information, see Amazon Redshift database encryption.

For instructions to create a data warehouse, see Creating a cluster for provisioned clusters, or Creating a workgroup with a namespace for Redshift Serverless.

Enable case sensitivity on the data warehouse

For the integration to be successful, the case sensitivity parameter (enable_case_sensitive_identifier) must be enabled for the data warehouse. By default, case sensitivity is disabled on all provisioned clusters and Redshift Serverless workgroups.

To enable case sensitivity, perform the following steps depending on your data warehouse type:

  • Provisioned cluster – To enable case sensitivity on a provisioned cluster, create a custom parameter group with the enable_case_sensitive_identifier parameter enabled. Then, associate the parameter group with the cluster. For instructions, see Managing parameter groups using the console or Configuring parameter values using the AWS CLI.

    Note

    Remember to reboot the cluster after you associate the custom parameter group with it.

  • Serverless workgroup – To enable case sensitivity on a Redshift Serverless workgroup, you must use the AWS CLI. The Amazon Redshift console doesn't currently support modifying Redshift Serverless parameter values. Send the following update-workgroup request:

    aws redshift-serverless update-workgroup \ --workgroup-name target-workgroup \ --config-parameters parameterKey=enable_case_sensitive_identifier,parameterValue=true

    You don't need to reboot a workgroup after you modify its parameter values.

Configure authorization for the data warehouse

After you create a data warehouse, you must configure the source Aurora DB cluster as an authorized integration source. For instructions, see Configure authorization for your Amazon Redshift data warehouse.

Set up an integration using the AWS SDKs

Rather than setting up each resource manually, you can run the following Python script to automatically set up the required resources for you. The code example uses the AWS SDK for Python (Boto3) to create a source Amazon Aurora DB cluster and target Amazon Redshift data warehouse, each with the required parameter values. It then waits for the databases to be available before creating a zero-ETL integration between them. You can comment out different functions depending on which resources you need to set up.

To install the required dependencies, run the following commands:

pip install boto3 pip install time

Within the script, optionally modify the names of the source, target, and parameter groups. The final function creates an integration named my-integration after the resources are set up.

Aurora MySQL
import boto3 import time # Build the client using the default credential configuration. # You can use the CLI and run 'aws configure' to set access key, secret # key, and default Region. rds = boto3.client('rds') redshift = boto3.client('redshift') sts = boto3.client('sts') source_cluster_name = 'my-source-cluster' # A name for the source cluster source_param_group_name = 'my-source-param-group' # A name for the source parameter group target_cluster_name = 'my-target-cluster' # A name for the target cluster target_param_group_name = 'my-target-param-group' # A name for the target parameter group def create_source_cluster(*args): """Creates a source Aurora MySQL DB cluster""" response = rds.create_db_cluster_parameter_group( DBClusterParameterGroupName=source_param_group_name, DBParameterGroupFamily='aurora-mysql8.0', Description='For Aurora MySQL binary logging' ) print('Created source parameter group: ' + response['DBClusterParameterGroup']['DBClusterParameterGroupName']) response = rds.modify_db_cluster_parameter_group( DBClusterParameterGroupName=source_param_group_name, Parameters=[ { 'ParameterName': 'aurora_enhanced_binlog', 'ParameterValue': '1', 'ApplyMethod': 'pending-reboot' }, { 'ParameterName': 'binlog_backup', 'ParameterValue': '0', 'ApplyMethod': 'pending-reboot' }, { 'ParameterName': 'binlog_format', 'ParameterValue': 'ROW', 'ApplyMethod': 'pending-reboot' }, { 'ParameterName': 'binlog_replication_globaldb', 'ParameterValue': '0', 'ApplyMethod': 'pending-reboot' }, { 'ParameterName': 'binlog_row_image', 'ParameterValue': 'full', 'ApplyMethod': 'pending-reboot' }, { 'ParameterName': 'binlog_row_metadata', 'ParameterValue': 'full', 'ApplyMethod': 'pending-reboot' } ] ) print('Modified source parameter group: ' + response['DBClusterParameterGroupName']) response = rds.create_db_cluster( DBClusterIdentifier=source_cluster_name, DBClusterParameterGroupName=source_param_group_name, Engine='aurora-mysql', EngineVersion='8.0.mysql_aurora.3.05.2', DatabaseName='myauroradb', MasterUsername='username', MasterUserPassword='Password01**' ) print('Creating source cluster: ' + response['DBCluster']['DBClusterIdentifier']) source_arn = (response['DBCluster']['DBClusterArn']) create_target_cluster(target_cluster_name, source_arn, target_param_group_name) response = rds.create_db_instance( DBInstanceClass='db.r6g.2xlarge', DBClusterIdentifier=source_cluster_name, DBInstanceIdentifier=source_cluster_name + '-instance', Engine='aurora-mysql' ) return(response) def create_target_cluster(target_cluster_name, source_arn, target_param_group_name): """Creates a target Redshift cluster""" response = redshift.create_cluster_parameter_group( ParameterGroupName=target_param_group_name, ParameterGroupFamily='redshift-1.0', Description='For Aurora MySQL zero-ETL integrations' ) print('Created target parameter group: ' + response['ClusterParameterGroup']['ParameterGroupName']) response = redshift.modify_cluster_parameter_group( ParameterGroupName=target_param_group_name, Parameters=[ { 'ParameterName': 'enable_case_sensitive_identifier', 'ParameterValue': 'true' } ] ) print('Modified target parameter group: ' + response['ParameterGroupName']) response = redshift.create_cluster( ClusterIdentifier=target_cluster_name, NodeType='ra3.4xlarge', NumberOfNodes=2, Encrypted=True, MasterUsername='username', MasterUserPassword='Password01**', ClusterParameterGroupName=target_param_group_name ) print('Creating target cluster: ' + response['Cluster']['ClusterIdentifier']) # Retrieve the target cluster ARN response = redshift.describe_clusters( ClusterIdentifier=target_cluster_name ) target_arn = response['Clusters'][0]['ClusterNamespaceArn'] # Retrieve the current user's account ID response = sts.get_caller_identity() account_id = response['Account'] # Create a resource policy specifying cluster ARN and account ID response = redshift.put_resource_policy( ResourceArn=target_arn, Policy=''' { \"Version\":\"2012-10-17\", \"Statement\":[ {\"Effect\":\"Allow\", \"Principal\":{ \"Service\":\"redshift.amazonaws.com\" }, \"Action\":[\"redshift:AuthorizeInboundIntegration\"], \"Condition\":{ \"StringEquals\":{ \"aws:SourceArn\":\"%s\"} } }, {\"Effect\":\"Allow\", \"Principal\":{ \"AWS\":\"arn:aws:iam::%s:root\"}, \"Action\":\"redshift:CreateInboundIntegration\"} ] } ''' % (source_arn, account_id) ) return(response) def wait_for_cluster_availability(*args): """Waits for both clusters to be available""" print('Waiting for clusters to be available...') response = rds.describe_db_clusters( DBClusterIdentifier=source_cluster_name ) source_status = response['DBClusters'][0]['Status'] source_arn = response['DBClusters'][0]['DBClusterArn'] response = rds.describe_db_instances( DBInstanceIdentifier=source_cluster_name + '-instance' ) source_instance_status = response['DBInstances'][0]['DBInstanceStatus'] response = redshift.describe_clusters( ClusterIdentifier=target_cluster_name ) target_status = response['Clusters'][0]['ClusterStatus'] target_arn = response['Clusters'][0]['ClusterNamespaceArn'] # Every 60 seconds, check whether the clusters are available. if source_status != 'available' or target_status != 'available' or source_instance_status != 'available': time.sleep(60) response = wait_for_cluster_availability( source_cluster_name, target_cluster_name) else: print('Clusters available. Ready to create zero-ETL integration.') create_integration(source_arn, target_arn) return def create_integration(source_arn, target_arn): """Creates a zero-ETL integration using the source and target clusters""" response = rds.create_integration( SourceArn=source_arn, TargetArn=target_arn, IntegrationName='my-integration' ) print('Creating integration: ' + response['IntegrationName']) def main(): """main function""" create_source_cluster(source_cluster_name, source_param_group_name) wait_for_cluster_availability(source_cluster_name, target_cluster_name) if __name__ == "__main__": main()
Aurora PostgreSQL
import boto3 import time # Build the client using the default credential configuration. # You can use the CLI and run 'aws configure' to set access key, secret # key, and default Region. rds = boto3.client('rds') redshift = boto3.client('redshift') sts = boto3.client('sts') source_cluster_name = 'my-source-cluster' # A name for the source cluster source_param_group_name = 'my-source-param-group' # A name for the source parameter group target_cluster_name = 'my-target-cluster' # A name for the target cluster target_param_group_name = 'my-target-param-group' # A name for the target parameter group def create_source_cluster(*args): """Creates a source Aurora PostgreSQL DB cluster""" response = rds.create_db_cluster_parameter_group( DBClusterParameterGroupName=source_param_group_name, DBParameterGroupFamily='aurora-postgresql16', Description='For Aurora PostgreSQL logical replication' ) print('Created source parameter group: ' + response['DBClusterParameterGroup']['DBClusterParameterGroupName']) response = rds.modify_db_cluster_parameter_group( DBClusterParameterGroupName=source_param_group_name, Parameters=[ { 'ParameterName': 'rds.logical_replication', 'ParameterValue': '1', 'ApplyMethod': 'pending-reboot' }, { 'ParameterName': 'aurora.enhanced_logical_replication', 'ParameterValue': '1', 'ApplyMethod': 'pending-reboot' }, { 'ParameterName': 'aurora.logical_replication_backup', 'ParameterValue': '0', 'ApplyMethod': 'pending-reboot' }, { 'ParameterName': 'aurora.logical_replication_globaldb', 'ParameterValue': '0', 'ApplyMethod': 'pending-reboot' } ] ) print('Modified source parameter group: ' + response['DBClusterParameterGroupName']) response = rds.create_db_cluster( DBClusterIdentifier=source_cluster_name, DBClusterParameterGroupName=source_param_group_name, Engine='aurora-postgresql', EngineVersion='16.4.aurora-postgresql', DatabaseName='mypostgresdb', MasterUsername='username', MasterUserPassword='Password01**' ) print('Creating source cluster: ' + response['DBCluster']['DBClusterIdentifier']) source_arn = (response['DBCluster']['DBClusterArn']) create_target_cluster(target_cluster_name, source_arn, target_param_group_name) response = rds.create_db_instance( DBInstanceClass='db.r6g.2xlarge', DBClusterIdentifier=source_cluster_name, DBInstanceIdentifier=source_cluster_name + '-instance', Engine='aurora-postgresql' ) return(response) def create_target_cluster(target_cluster_name, source_arn, target_param_group_name): """Creates a target Redshift cluster""" response = redshift.create_cluster_parameter_group( ParameterGroupName=target_param_group_name, ParameterGroupFamily='redshift-1.0', Description='For Aurora PostgreSQL zero-ETL integrations' ) print('Created target parameter group: ' + response['ClusterParameterGroup']['ParameterGroupName']) response = redshift.modify_cluster_parameter_group( ParameterGroupName=target_param_group_name, Parameters=[ { 'ParameterName': 'enable_case_sensitive_identifier', 'ParameterValue': 'true' } ] ) print('Modified target parameter group: ' + response['ParameterGroupName']) response = redshift.create_cluster( ClusterIdentifier=target_cluster_name, NodeType='ra3.4xlarge', NumberOfNodes=2, Encrypted=True, MasterUsername='username', MasterUserPassword='Password01**', ClusterParameterGroupName=target_param_group_name ) print('Creating target cluster: ' + response['Cluster']['ClusterIdentifier']) # Retrieve the target cluster ARN response = redshift.describe_clusters( ClusterIdentifier=target_cluster_name ) target_arn = response['Clusters'][0]['ClusterNamespaceArn'] # Retrieve the current user's account ID response = sts.get_caller_identity() account_id = response['Account'] # Create a resource policy specifying cluster ARN and account ID response = redshift.put_resource_policy( ResourceArn=target_arn, Policy=''' { \"Version\":\"2012-10-17\", \"Statement\":[ {\"Effect\":\"Allow\", \"Principal\":{ \"Service\":\"redshift.amazonaws.com\" }, \"Action\":[\"redshift:AuthorizeInboundIntegration\"], \"Condition\":{ \"StringEquals\":{ \"aws:SourceArn\":\"%s\"} } }, {\"Effect\":\"Allow\", \"Principal\":{ \"AWS\":\"arn:aws:iam::%s:root\"}, \"Action\":\"redshift:CreateInboundIntegration\"} ] } ''' % (source_arn, account_id) ) return(response) def wait_for_cluster_availability(*args): """Waits for both clusters to be available""" print('Waiting for clusters to be available...') response = rds.describe_db_clusters( DBClusterIdentifier=source_cluster_name ) source_status = response['DBClusters'][0]['Status'] source_arn = response['DBClusters'][0]['DBClusterArn'] response = rds.describe_db_instances( DBInstanceIdentifier=source_cluster_name + '-instance' ) source_instance_status = response['DBInstances'][0]['DBInstanceStatus'] response = redshift.describe_clusters( ClusterIdentifier=target_cluster_name ) target_status = response['Clusters'][0]['ClusterStatus'] target_arn = response['Clusters'][0]['ClusterNamespaceArn'] # Every 60 seconds, check whether the clusters are available. if source_status != 'available' or target_status != 'available' or source_instance_status != 'available': time.sleep(60) response = wait_for_cluster_availability( source_cluster_name, target_cluster_name) else: print('Clusters available. Ready to create zero-ETL integration.') create_integration(source_arn, target_arn) return def create_integration(source_arn, target_arn): """Creates a zero-ETL integration using the source and target clusters""" response = rds.create_integration( SourceArn=source_arn, TargetArn=target_arn, IntegrationName='my-integration' ) print('Creating integration: ' + response['IntegrationName']) def main(): """main function""" create_source_cluster(source_cluster_name, source_param_group_name) wait_for_cluster_availability(source_cluster_name, target_cluster_name) if __name__ == "__main__": main()

Next steps

With a source Aurora DB cluster and an Amazon Redshift target data warehouse, you can now create a zero-ETL integration and replicate data. For instructions, see Creating Aurora zero-ETL integrations with Amazon Redshift.