This documentation is for Version 1 of the AWS CLI only. For documentation related to Version 2 of the AWS CLI, see the Version 2 User Guide.
Amazon Comprehend examples using AWS CLI
The following code examples show you how to perform actions and implement common scenarios by using the AWS Command Line Interface with Amazon Comprehend.
Actions are code excerpts from larger programs and must be run in context. While actions show you how to call individual service functions, you can see actions in context in their related scenarios.
Each example includes a link to the complete source code, where you can find instructions on how to set up and run the code in context.
Topics
Actions
The following code example shows how to use batch-detect-dominant-language.
- AWS CLI
- 
             
                    To detect the dominant language of multiple input texts The following batch-detect-dominant-languageexample analyzes multiple input texts and returns the dominant language of each. The pre-trained models confidence score is also output for each prediction.aws comprehend batch-detect-dominant-language \ --text-list"Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."Output: { "ResultList": [ { "Index": 0, "Languages": [ { "LanguageCode": "en", "Score": 0.9986501932144165 } ] } ], "ErrorList": [] }For more information, see Dominant Language in the Amazon Comprehend Developer Guide. - 
                    For API details, see BatchDetectDominantLanguage in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use batch-detect-entities.
- AWS CLI
- 
             
                    To detect entities from multiple input texts The following batch-detect-entitiesexample analyzes multiple input texts and returns the named entities of each. The pre-trained model's confidence score is also output for each prediction.aws comprehend batch-detect-entities \ --language-code en \ --text-list"Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st.""Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."Output: { "ResultList": [ { "Index": 0, "Entities": [ { "Score": 0.9985517859458923, "Type": "PERSON", "Text": "Jane", "BeginOffset": 5, "EndOffset": 9 }, { "Score": 0.9767839312553406, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 16, "EndOffset": 50 }, { "Score": 0.9856694936752319, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 71, "EndOffset": 90 }, { "Score": 0.9652159810066223, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.9986667037010193, "Type": "DATE", "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 1, "Entities": [ { "Score": 0.720084547996521, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9865870475769043, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.5895616412162781, "Type": "LOCATION", "Text": "Anywhere", "BeginOffset": 60, "EndOffset": 68 }, { "Score": 0.6809214353561401, "Type": "PERSON", "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9979087114334106, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }For more information, see Entities in the Amazon Comprehend Developer Guide. - 
                    For API details, see BatchDetectEntities in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use batch-detect-key-phrases.
- AWS CLI
- 
             
                    To detect key phrases of multiple text inputs The following batch-detect-key-phrasesexample analyzes multiple input texts and returns the key noun phrases of each. The pre-trained model's confidence score for each prediction is also output.aws comprehend batch-detect-key-phrases \ --language-code en \ --text-list"Hello Zhang Wei, I am John, writing to you about the trip for next Saturday.""Dear Jane, Your AnyCompany Financial Services LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st.""Please send customer feedback to Sunshine Spa, 123 Main St, Anywhere or to Alice at AnySpa@example.com."Output: { "ResultList": [ { "Index": 0, "KeyPhrases": [ { "Score": 0.99700927734375, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9929308891296387, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9997230172157288, "Text": "the trip", "BeginOffset": 49, "EndOffset": 57 }, { "Score": 0.9999470114707947, "Text": "next Saturday", "BeginOffset": 62, "EndOffset": 75 } ] }, { "Index": 1, "KeyPhrases": [ { "Score": 0.8358274102210999, "Text": "Dear Jane", "BeginOffset": 0, "EndOffset": 9 }, { "Score": 0.989359974861145, "Text": "Your AnyCompany Financial Services", "BeginOffset": 11, "EndOffset": 45 }, { "Score": 0.8812323808670044, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 47, "EndOffset": 90 }, { "Score": 0.9999381899833679, "Text": "a minimum payment", "BeginOffset": 95, "EndOffset": 112 }, { "Score": 0.9997439980506897, "Text": ".53", "BeginOffset": 116, "EndOffset": 119 }, { "Score": 0.996875524520874, "Text": "July 31st", "BeginOffset": 135, "EndOffset": 144 } ] }, { "Index": 2, "KeyPhrases": [ { "Score": 0.9990295767784119, "Text": "customer feedback", "BeginOffset": 12, "EndOffset": 29 }, { "Score": 0.9994127750396729, "Text": "Sunshine Spa", "BeginOffset": 33, "EndOffset": 45 }, { "Score": 0.9892991185188293, "Text": "123 Main St", "BeginOffset": 47, "EndOffset": 58 }, { "Score": 0.9969810843467712, "Text": "Alice", "BeginOffset": 75, "EndOffset": 80 }, { "Score": 0.9703696370124817, "Text": "AnySpa@example.com", "BeginOffset": 84, "EndOffset": 99 } ] } ], "ErrorList": [] }For more information, see Key Phrases in the Amazon Comprehend Developer Guide. - 
                    For API details, see BatchDetectKeyPhrases in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use batch-detect-sentiment.
- AWS CLI
- 
             
                    To detect the prevailing sentiment of multiple input texts The following batch-detect-sentimentexample analyzes multiple input texts and returns the prevailing sentiment (POSITIVE,NEUTRAL,MIXED, orNEGATIVE, of each one).aws comprehend batch-detect-sentiment \ --text-list"That movie was very boring, I can't believe it was over four hours long.""It is a beautiful day for hiking today.""My meal was okay, I'm excited to try other restaurants."\ --language-codeenOutput: { "ResultList": [ { "Index": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.00011316669406369328, "Negative": 0.9995445609092712, "Neutral": 0.00014722718333359808, "Mixed": 0.00019498742767609656 } }, { "Index": 1, "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9981263279914856, "Negative": 0.00015240783977787942, "Neutral": 0.0013876151060685515, "Mixed": 0.00033366199932061136 } }, { "Index": 2, "Sentiment": "MIXED", "SentimentScore": { "Positive": 0.15930435061454773, "Negative": 0.11471917480230331, "Neutral": 0.26897063851356506, "Mixed": 0.45700588822364807 } } ], "ErrorList": [] }For more information, see Sentiment in the Amazon Comprehend Developer Guide. - 
                    For API details, see BatchDetectSentiment in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use batch-detect-syntax.
- AWS CLI
- 
             
                    To inspect the syntax and parts of speech of words in multiple input texts The following batch-detect-syntaxexample analyzes the syntax of multiple input texts and returns the different parts of speech. The pre-trained model's confidence score is also output for each prediction.aws comprehend batch-detect-syntax \ --text-list"It is a beautiful day.""Can you please pass the salt?""Please pay the bill before the 31st."\ --language-codeenOutput: { "ResultList": [ { "Index": 0, "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999937117099762 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999926686286926 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987891912460327 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999778866767883 } }, { "TokenId": 6, "Text": ".", "BeginOffset": 21, "EndOffset": 22, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999974966049194 } } ] }, { "Index": 1, "SyntaxTokens": [ { "TokenId": 1, "Text": "Can", "BeginOffset": 0, "EndOffset": 3, "PartOfSpeech": { "Tag": "AUX", "Score": 0.9999770522117615 } }, { "TokenId": 2, "Text": "you", "BeginOffset": 4, "EndOffset": 7, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999986886978149 } }, { "TokenId": 3, "Text": "please", "BeginOffset": 8, "EndOffset": 14, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9681622385978699 } }, { "TokenId": 4, "Text": "pass", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999874830245972 } }, { "TokenId": 5, "Text": "the", "BeginOffset": 20, "EndOffset": 23, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999827146530151 } }, { "TokenId": 6, "Text": "salt", "BeginOffset": 24, "EndOffset": 28, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9995040893554688 } }, { "TokenId": 7, "Text": "?", "BeginOffset": 28, "EndOffset": 29, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.999998152256012 } } ] }, { "Index": 2, "SyntaxTokens": [ { "TokenId": 1, "Text": "Please", "BeginOffset": 0, "EndOffset": 6, "PartOfSpeech": { "Tag": "INTJ", "Score": 0.9997857809066772 } }, { "TokenId": 2, "Text": "pay", "BeginOffset": 7, "EndOffset": 10, "PartOfSpeech": { "Tag": "VERB", "Score": 0.9999252557754517 } }, { "TokenId": 3, "Text": "the", "BeginOffset": 11, "EndOffset": 14, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999842643737793 } }, { "TokenId": 4, "Text": "bill", "BeginOffset": 15, "EndOffset": 19, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999588131904602 } }, { "TokenId": 5, "Text": "before", "BeginOffset": 20, "EndOffset": 26, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9958304762840271 } }, { "TokenId": 6, "Text": "the", "BeginOffset": 27, "EndOffset": 30, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999947547912598 } }, { "TokenId": 7, "Text": "31st", "BeginOffset": 31, "EndOffset": 35, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9924124479293823 } }, { "TokenId": 8, "Text": ".", "BeginOffset": 35, "EndOffset": 36, "PartOfSpeech": { "Tag": "PUNCT", "Score": 0.9999955892562866 } } ] } ], "ErrorList": [] }For more information, see Syntax Analysis in the Amazon Comprehend Developer Guide. - 
                    For API details, see BatchDetectSyntax in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use batch-detect-targeted-sentiment.
- AWS CLI
- 
             
                    To detect the sentiment and each named entity for multiple input texts The following batch-detect-targeted-sentimentexample analyzes multiple input texts and returns the named entities along with the prevailing sentiment attached to each entity. The pre-trained model's confidence score is also output for each prediction.aws comprehend batch-detect-targeted-sentiment \ --language-code en \ --text-list"That movie was really boring, the original was way more entertaining""The trail is extra beautiful today.""My meal was just okay."Output: { "ResultList": [ { "Index": 0, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999009966850281, "GroupScore": 1.0, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.13887299597263336, "Negative": 0.8057460188865662, "Neutral": 0.05525200068950653, "Mixed": 0.00012799999967683107 } }, "BeginOffset": 5, "EndOffset": 10 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9921110272407532, "GroupScore": 1.0, "Text": "original", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999989867210388, "Negative": 9.999999974752427e-07, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 34, "EndOffset": 42 } ] } ] }, { "Index": 1, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.7545599937438965, "GroupScore": 1.0, "Text": "trail", "Type": "OTHER", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 4, "EndOffset": 9 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999960064888, "GroupScore": 1.0, "Text": "today", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 9.000000318337698e-06, "Negative": 1.9999999949504854e-06, "Neutral": 0.9999859929084778, "Mixed": 3.999999989900971e-06 } }, "BeginOffset": 29, "EndOffset": 34 } ] } ] }, { "Index": 2, "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999880194664001, "GroupScore": 1.0, "Text": "My", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 2 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9995260238647461, "GroupScore": 1.0, "Text": "meal", "Type": "OTHER", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.04695599898695946, "Negative": 0.003226999891921878, "Neutral": 0.6091709733009338, "Mixed": 0.34064599871635437 } }, "BeginOffset": 3, "EndOffset": 7 } ] } ] } ], "ErrorList": [] }For more information, see Targeted Sentiment in the Amazon Comprehend Developer Guide. - 
                    For API details, see BatchDetectTargetedSentiment in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use classify-document.
- AWS CLI
- 
             
                    To classify document with model-specific endpoint The following classify-documentexample classifies a document with an endpoint of a custom model. The model in this example was trained on a dataset containing sms messages labeled as spam or non-spam, or, "ham".aws comprehend classify-document \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint\ --text"CONGRATULATIONS! TXT 1235550100 to win $5000"Output: { "Classes": [ { "Name": "spam", "Score": 0.9998599290847778 }, { "Name": "ham", "Score": 0.00014001205272506922 } ] }For more information, see Custom Classification in the Amazon Comprehend Developer Guide. - 
                    For API details, see ClassifyDocument in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use contains-pii-entities.
- AWS CLI
- 
             
                    To analyze the input text for the presence of PII information The following contains-pii-entitiesexample analyzes the input text for the presence of personally identifiable information (PII) and returns the labels of identified PII entity types such as name, address, bank account number, or phone number.aws comprehend contains-pii-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. Customer feedback for Sunshine Spa, 100 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."Output: { "Labels": [ { "Name": "NAME", "Score": 1.0 }, { "Name": "EMAIL", "Score": 1.0 }, { "Name": "BANK_ACCOUNT_NUMBER", "Score": 0.9995794296264648 }, { "Name": "BANK_ROUTING", "Score": 0.9173126816749573 }, { "Name": "CREDIT_DEBIT_NUMBER", "Score": 1.0 } }For more information, see Personally Identifiable Information (PII) in the Amazon Comprehend Developer Guide. - 
                    For API details, see ContainsPiiEntities in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use create-dataset.
- AWS CLI
- 
             
                    To create a flywheel dataset The following create-datasetexample creates a dataset for a flywheel. This dataset will be used as additional training data as specified by the--dataset-typetag.aws comprehend create-dataset \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity\ --dataset-nameexample-dataset\ --dataset-type"TRAIN"\ --input-data-configfile://inputConfig.jsonContents of file://inputConfig.json:{ "DataFormat": "COMPREHEND_CSV", "DocumentClassifierInputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/training-data.csv" } }Output: { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset" }For more information, see Flywheel Overview in Amazon Comprehend Developer Guide. - 
                    For API details, see CreateDataset in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use create-document-classifier.
- AWS CLI
- 
             
                    To create a document classifier to categorize documents The following create-document-classifierexample begins the training process for a document classifier model. The training data file,training.csv, is located at the--input-data-configtag.training.csvis a two column document where the labels, or, classifications are provided in the first column and the documents are provided in the second column.aws comprehend create-document-classifier \ --document-classifier-nameexample-classifier\ --data-access-arnarn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --language-codeenOutput: { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }For more information, see Custom Classification in the Amazon Comprehend Developer Guide. - 
                    For API details, see CreateDocumentClassifier in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use create-endpoint.
- AWS CLI
- 
             
                    To create an endpoint for a custom model The following create-endpointexample creates an endpoint for synchronous inference for a previously trained custom model.aws comprehend create-endpoint \ --endpoint-nameexample-classifier-endpoint-1\ --model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier\ --desired-inference-units1Output: { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1" }For more information, see Managing Amazon Comprehend endpoints in the Amazon Comprehend Developer Guide. - 
                    For API details, see CreateEndpoint in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use create-entity-recognizer.
- AWS CLI
- 
             
                    To create a custom entity recognizer The following create-entity-recognizerexample begins the training process for a custom entity recognizer model. This example uses a CSV file containing training documents,raw_text.csv, and a CSV entity list,entity_list.csvto train the model.entity-list.csvcontains the following columns: text and type.aws comprehend create-entity-recognizer \ --recognizer-nameexample-entity-recognizer--data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --input-data-config"EntityTypes=[{Type=DEVICE}],Documents={S3Uri=s3://amzn-s3-demo-bucket/trainingdata/raw_text.csv},EntityList={S3Uri=s3://amzn-s3-demo-bucket/trainingdata/entity_list.csv}"--language-codeenOutput: { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:example-entity-recognizer/entityrecognizer1" }For more information, see Custom entity recognition in the Amazon Comprehend Developer Guide. - 
                    For API details, see CreateEntityRecognizer in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use create-flywheel.
- AWS CLI
- 
             
                    To create a flywheel The following create-flywheelexample creates a flywheel to orchestrate the ongoing training of either a document classification or entity recognition model. The flywheel in this example is created to manage an existing trained model specified by the--active-model-arntag. When the flywheel is created, a data lake is created at the--input-data-laketag.aws comprehend create-flywheel \ --flywheel-nameexample-flywheel\ --active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --data-lake-s3-uri"s3://amzn-s3-demo-bucket"Output: { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel" }For more information, see Flywheel Overview in Amazon Comprehend Developer Guide. - 
                    For API details, see CreateFlywheel in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use delete-document-classifier.
- AWS CLI
- 
             
                    To delete a custom document classifier The following delete-document-classifierexample deletes a custom document classifier model.aws comprehend delete-document-classifier \ --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1This command produces no output. For more information, see Managing Amazon Comprehend endpoints in the Amazon Comprehend Developer Guide. - 
                    For API details, see DeleteDocumentClassifier in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use delete-endpoint.
- AWS CLI
- 
             
                    To delete an endpoint for a custom model The following delete-endpointexample deletes a model-specific endpoint. All endpoints must be deleted in order for the model to be deleted.aws comprehend delete-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint-1This command produces no output. For more information, see Managing Amazon Comprehend endpoints in the Amazon Comprehend Developer Guide. - 
                    For API details, see DeleteEndpoint in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use delete-entity-recognizer.
- AWS CLI
- 
             
                    To delete a custom entity recognizer model The following delete-entity-recognizerexample deletes a custom entity recognizer model.aws comprehend delete-entity-recognizer \ --entity-recognizer-arnarn:aws:comprehend:us-west-2:111122223333:entity-recognizer/example-entity-recognizer-1This command produces no output. For more information, see Managing Amazon Comprehend endpoints in the Amazon Comprehend Developer Guide. - 
                    For API details, see DeleteEntityRecognizer in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use delete-flywheel.
- AWS CLI
- 
             
                    To delete a flywheel The following delete-flywheelexample deletes a flywheel. The data lake or the model associated with the flywheel is not deleted.aws comprehend delete-flywheel \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1This command produces no output. For more information, see Flywheel overview in the Amazon Comprehend Developer Guide. - 
                    For API details, see DeleteFlywheel in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use delete-resource-policy.
- AWS CLI
- 
             
                    To delete a resource-based policy The following delete-resource-policyexample deletes a resource-based policy from an Amazon Comprehend resource.aws comprehend delete-resource-policy \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1/version/1This command produces no output. For more information, see Copying custom models between AWS accounts in the Amazon Comprehend Developer Guide. - 
                    For API details, see DeleteResourcePolicy in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-dataset.
- AWS CLI
- 
             
                    To describe a flywheel dataset The following describe-datasetexample gets the properties of a flywheel dataset.aws comprehend describe-dataset \ --dataset-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-datasetOutput: { "DatasetProperties": { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset", "DatasetName": "example-dataset", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/12345678A123456Z/datasets/example-dataset/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" } }For more information, see Flywheel Overview in Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeDataset in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-document-classification-job.
- AWS CLI
- 
             
                    To describe a document classification job The following describe-document-classification-jobexample gets the properties of an asynchronous document classification job.aws comprehend describe-document-classification-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "DocumentClassificationJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/1", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-CLN-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }For more information, see Custom Classification in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeDocumentClassificationJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-document-classifier.
- AWS CLI
- 
             
                    To describe a document classifier The following describe-document-classifierexample gets the properties of a custom document classifier model.aws comprehend describe-document-classifier \ --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1Output: { "DocumentClassifierProperties": { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "MULTI_CLASS" } }For more information, see Creating and managing custom models in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeDocumentClassifier in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-dominant-language-detection-job.
- AWS CLI
- 
             
                    To describe a dominant language detection detection job. The following describe-dominant-language-detection-jobexample gets the properties of an asynchronous dominant language detection job.aws comprehend describe-dominant-language-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "DominantLanguageDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeDominantLanguageDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-endpoint.
- AWS CLI
- 
             
                    To describe a specific endpoint The following describe-endpointexample gets the properties of a model-specific endpoint.aws comprehend describe-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpointOutput: { "EndpointProperties": { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint, "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } }For more information, see Managing Amazon Comprehend endpoints in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeEndpoint in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-entities-detection-job.
- AWS CLI
- 
             
                    To describe an entities detection job The following describe-entities-detection-jobexample gets the properties of an asynchronous entities detection job.aws comprehend describe-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "EntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-entity-detector", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeEntitiesDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-entity-recognizer.
- AWS CLI
- 
             
                    To describe an entity recognizer The following describe-entity-recognizerexample gets the properties of a custom entity recognizer model.aws comprehend describe-entity-recognizer \entity-recognizer-arnarn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1Output: { "EntityRecognizerProperties": { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/business-recongizer-1/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "VersionName": "1" } }For more information, see Custom entity recognition in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeEntityRecognizer in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-events-detection-job.
- AWS CLI
- 
             
                    To describe an events detection job. The following describe-events-detection-jobexample gets the properties of an asynchronous events detection job.aws comprehend describe-events-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "EventsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "events_job_1", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-12T18:45:56.054000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/EventsData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-EVENTS-123456abcdeb0e11022f22a11EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeEventsDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-flywheel-iteration.
- AWS CLI
- 
             
                    To describe a flywheel iteration The following describe-flywheel-iterationexample gets the properties of a flywheel iteration.aws comprehend describe-flywheel-iteration \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel\ --flywheel-iteration-id20232222AEXAMPLEOutput: { "FlywheelIterationProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "FlywheelIterationId": "20232222AEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AveragePrecision": 0.8287636394041166, "AverageRecall": 0.7427084833645399, "AverageAccuracy": 0.8795394154118689 }, "TrainedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/Comprehend-Generated-v1-bb52d585", "TrainedModelMetrics": { "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-destination-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/evaluation/20230616T211026Z/" } }For more information, see Flywheel overview in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeFlywheelIteration in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-flywheel.
- AWS CLI
- 
             
                    To describe a flywheel The following describe-flywheelexample gets the properties of a flywheel. In this example, the model associated with the flywheel is a custom classifier model that is trained to classify documents as either spam or nonspam, or, "ham".aws comprehend describe-flywheel \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheelOutput: { "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-model/version/1", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS", "Labels": [ "ham", "spam" ] } }, "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-16T20:21:43.567000+00:00" } }For more information, see Flywheel Overview in Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeFlywheel in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-key-phrases-detection-job.
- AWS CLI
- 
             
                    To describe a key phrases detection job The following describe-key-phrases-detection-jobexample gets the properties of an asynchronous key phrases detection job.aws comprehend describe-key-phrases-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "KeyPhrasesDetectionJobProperties": { "JobId": "69aa080c00fc68934a6a98f10EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/69aa080c00fc68934a6a98f10EXAMPLE", "JobName": "example-key-phrases-detection-job", "JobStatus": "COMPLETED", "SubmitTime": 1686606439.177, "EndTime": 1686606806.157, "InputDataConfig": { "S3Uri": "s3://dereksbucket1001/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://dereksbucket1002/testfolder/111122223333-KP-69aa080c00fc68934a6a98f10EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testrole" } }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeKeyPhrasesDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-pii-entities-detection-job.
- AWS CLI
- 
             
                    To describe a PII entities detection job The following describe-pii-entities-detection-jobexample gets the properties of an asynchronous pii entities detection job.aws comprehend describe-pii-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "PiiEntitiesDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-pii-entities-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/thefolder/111122223333-NER-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::12345678012:role/service-role/AmazonComprehendServiceRole-example-role" } }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribePiiEntitiesDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-resource-policy.
- AWS CLI
- 
             
                    To describe a resource policy attached to a model The following describe-resource-policyexample gets the properties of a resource-based policy attached to a model.aws comprehend describe-resource-policy \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1Output: { "ResourcePolicy": "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Effect\":\"Allow\",\"Principal\":{\"AWS\":\"arn:aws:iam::444455556666:root\"},\"Action\":\"comprehend:ImportModel\",\"Resource\":\"*\"}]}", "CreationTime": "2023-06-19T18:44:26.028000+00:00", "LastModifiedTime": "2023-06-19T18:53:02.002000+00:00", "PolicyRevisionId": "baa675d069d07afaa2aa3106ae280f61" }For more information, see Copying custom models between AWS accounts in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeResourcePolicy in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-sentiment-detection-job.
- AWS CLI
- 
             
                    To describe a sentiment detection job The following describe-sentiment-detection-jobexample gets the properties of an asynchronous sentiment detection job.aws comprehend describe-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "SentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeSentimentDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-targeted-sentiment-detection-job.
- AWS CLI
- 
             
                    To describe a targeted sentiment detection job The following describe-targeted-sentiment-detection-jobexample gets the properties of an asynchronous targeted sentiment detection job.aws comprehend describe-targeted-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "TargetedSentimentDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "movie_review_analysis", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeTargetedSentimentDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use describe-topics-detection-job.
- AWS CLI
- 
             
                    To describe a topics detection job The following describe-topics-detection-jobexample gets the properties of an asynchronous topics detection job.aws comprehend describe-topics-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "TopicsDetectionJobProperties": { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example_topics_detection", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-examplerole" } }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see DescribeTopicsDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use detect-dominant-language.
- AWS CLI
- 
             
                    To detect the dominant language of input text The following detect-dominant-languageanalyzes the input text and identifies the dominant language. The pre-trained model's confidence score is also output.aws comprehend detect-dominant-language \ --text"It is a beautiful day in Seattle."Output: { "Languages": [ { "LanguageCode": "en", "Score": 0.9877256155014038 } ] }For more information, see Dominant Language in the Amazon Comprehend Developer Guide. - 
                    For API details, see DetectDominantLanguage in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use detect-entities.
- AWS CLI
- 
             
                    To detect named entities in input text The following detect-entitiesexample analyzes the input text and returns the named entities. The pre-trained model's confidence score is also output for each prediction.aws comprehend detect-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."Output: { "Entities": [ { "Score": 0.9994556307792664, "Type": "PERSON", "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9981022477149963, "Type": "PERSON", "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9986887574195862, "Type": "ORGANIZATION", "Text": "AnyCompany Financial Services, LLC", "BeginOffset": 33, "EndOffset": 67 }, { "Score": 0.9959119558334351, "Type": "OTHER", "Text": "1111-XXXX-1111-XXXX", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9708039164543152, "Type": "QUANTITY", "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9987268447875977, "Type": "DATE", "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9858865737915039, "Type": "OTHER", "Text": "XXXXXX1111", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9700471758842468, "Type": "OTHER", "Text": "XXXXX0000", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.9591118693351746, "Type": "ORGANIZATION", "Text": "Sunshine Spa", "BeginOffset": 340, "EndOffset": 352 }, { "Score": 0.9797496795654297, "Type": "LOCATION", "Text": "123 Main St", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.994929313659668, "Type": "PERSON", "Text": "Alice", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9949769377708435, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 403, "EndOffset": 418 } ] }For more information, see Entities in the Amazon Comprehend Developer Guide. - 
                    For API details, see DetectEntities in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use detect-key-phrases.
- AWS CLI
- 
             
                    To detect key phrases in input text The following detect-key-phrasesexample analyzes the input text and identifies the key noun phrases. The pre-trained model's confidence score is also output for each prediction.aws comprehend detect-key-phrases \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."Output: { "KeyPhrases": [ { "Score": 0.8996376395225525, "Text": "Zhang Wei", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9992469549179077, "Text": "John", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.988385021686554, "Text": "Your AnyCompany Financial Services", "BeginOffset": 28, "EndOffset": 62 }, { "Score": 0.8740853071212769, "Text": "LLC credit card account 1111-XXXX-1111-XXXX", "BeginOffset": 64, "EndOffset": 107 }, { "Score": 0.9999437928199768, "Text": "a minimum payment", "BeginOffset": 112, "EndOffset": 129 }, { "Score": 0.9998900890350342, "Text": ".53", "BeginOffset": 133, "EndOffset": 136 }, { "Score": 0.9979453086853027, "Text": "July 31st", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9983011484146118, "Text": "your autopay settings", "BeginOffset": 172, "EndOffset": 193 }, { "Score": 0.9996572136878967, "Text": "your payment", "BeginOffset": 211, "EndOffset": 223 }, { "Score": 0.9995037317276001, "Text": "the due date", "BeginOffset": 227, "EndOffset": 239 }, { "Score": 0.9702621698379517, "Text": "your bank account number XXXXXX1111", "BeginOffset": 245, "EndOffset": 280 }, { "Score": 0.9179925918579102, "Text": "the routing number XXXXX0000.Customer feedback", "BeginOffset": 286, "EndOffset": 332 }, { "Score": 0.9978160858154297, "Text": "Sunshine Spa", "BeginOffset": 337, "EndOffset": 349 }, { "Score": 0.9706913232803345, "Text": "123 Main St", "BeginOffset": 351, "EndOffset": 362 }, { "Score": 0.9941995143890381, "Text": "comments", "BeginOffset": 379, "EndOffset": 387 }, { "Score": 0.9759287238121033, "Text": "Alice", "BeginOffset": 391, "EndOffset": 396 }, { "Score": 0.8376792669296265, "Text": "AnySpa@example.com", "BeginOffset": 400, "EndOffset": 415 } ] }For more information, see Key Phrases in the Amazon Comprehend Developer Guide. - 
                    For API details, see DetectKeyPhrases in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use detect-pii-entities.
- AWS CLI
- 
             
                    To detect pii entities in input text The following detect-pii-entitiesexample analyzes the input text and identifies entities that contain personally identifiable information (PII). The pre-trained model's confidence score is also output for each prediction.aws comprehend detect-pii-entities \ --language-code en \ --text"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card \ account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st. Based on your autopay settings, \ we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. \ Customer feedback for Sunshine Spa, 123 Main St, Anywhere. Send comments to Alice at AnySpa@example.com."Output: { "Entities": [ { "Score": 0.9998322129249573, "Type": "NAME", "BeginOffset": 6, "EndOffset": 15 }, { "Score": 0.9998878240585327, "Type": "NAME", "BeginOffset": 22, "EndOffset": 26 }, { "Score": 0.9994089603424072, "Type": "CREDIT_DEBIT_NUMBER", "BeginOffset": 88, "EndOffset": 107 }, { "Score": 0.9999760985374451, "Type": "DATE_TIME", "BeginOffset": 152, "EndOffset": 161 }, { "Score": 0.9999449253082275, "Type": "BANK_ACCOUNT_NUMBER", "BeginOffset": 271, "EndOffset": 281 }, { "Score": 0.9999847412109375, "Type": "BANK_ROUTING", "BeginOffset": 306, "EndOffset": 315 }, { "Score": 0.999925434589386, "Type": "ADDRESS", "BeginOffset": 354, "EndOffset": 365 }, { "Score": 0.9989161491394043, "Type": "NAME", "BeginOffset": 394, "EndOffset": 399 }, { "Score": 0.9994171857833862, "Type": "EMAIL", "BeginOffset": 403, "EndOffset": 418 } ] }For more information, see Personally Identifiable Information (PII) in the Amazon Comprehend Developer Guide. - 
                    For API details, see DetectPiiEntities in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use detect-sentiment.
- AWS CLI
- 
             
                    To detect the sentiment of an input text The following detect-sentimentexample analyzes the input text and returns an inference of the prevailing sentiment (POSITIVE,NEUTRAL,MIXED, orNEGATIVE).aws comprehend detect-sentiment \ --language-code en \ --text"It is a beautiful day in Seattle"Output: { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9976957440376282, "Negative": 9.653854067437351e-05, "Neutral": 0.002169104292988777, "Mixed": 3.857641786453314e-05 } }For more information, see Sentiment in the Amazon Comprehend Developer Guide - 
                    For API details, see DetectSentiment in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use detect-syntax.
- AWS CLI
- 
             
                    To detect the parts of speech in an input text The following detect-syntaxexample analyzes the syntax of the input text and returns the different parts of speech. The pre-trained model's confidence score is also output for each prediction.aws comprehend detect-syntax \ --language-code en \ --text"It is a beautiful day in Seattle."Output: { "SyntaxTokens": [ { "TokenId": 1, "Text": "It", "BeginOffset": 0, "EndOffset": 2, "PartOfSpeech": { "Tag": "PRON", "Score": 0.9999740719795227 } }, { "TokenId": 2, "Text": "is", "BeginOffset": 3, "EndOffset": 5, "PartOfSpeech": { "Tag": "VERB", "Score": 0.999901294708252 } }, { "TokenId": 3, "Text": "a", "BeginOffset": 6, "EndOffset": 7, "PartOfSpeech": { "Tag": "DET", "Score": 0.9999938607215881 } }, { "TokenId": 4, "Text": "beautiful", "BeginOffset": 8, "EndOffset": 17, "PartOfSpeech": { "Tag": "ADJ", "Score": 0.9987351894378662 } }, { "TokenId": 5, "Text": "day", "BeginOffset": 18, "EndOffset": 21, "PartOfSpeech": { "Tag": "NOUN", "Score": 0.9999796748161316 } }, { "TokenId": 6, "Text": "in", "BeginOffset": 22, "EndOffset": 24, "PartOfSpeech": { "Tag": "ADP", "Score": 0.9998047947883606 } }, { "TokenId": 7, "Text": "Seattle", "BeginOffset": 25, "EndOffset": 32, "PartOfSpeech": { "Tag": "PROPN", "Score": 0.9940530061721802 } } ] }For more information, see Syntax Analysis in the Amazon Comprehend Developer Guide. - 
                    For API details, see DetectSyntax in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use detect-targeted-sentiment.
- AWS CLI
- 
             
                    To detect the targeted sentiment of named entities in an input text The following detect-targeted-sentimentexample analyzes the input text and returns the named entities in addition to the targeted sentiment associated with each entity. The pre-trained models confidence score for each prediction is also output.aws comprehend detect-targeted-sentiment \ --language-code en \ --text"I do not enjoy January because it is too cold but August is the perfect temperature"Output: { "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9999979734420776, "GroupScore": 1.0, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Positive": 0.0, "Negative": 0.0, "Neutral": 1.0, "Mixed": 0.0 } }, "BeginOffset": 0, "EndOffset": 1 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9638869762420654, "GroupScore": 1.0, "Text": "January", "Type": "DATE", "MentionSentiment": { "Sentiment": "NEGATIVE", "SentimentScore": { "Positive": 0.0031610000878572464, "Negative": 0.9967250227928162, "Neutral": 0.00011100000119768083, "Mixed": 1.9999999949504854e-06 } }, "BeginOffset": 15, "EndOffset": 22 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { { "Score": 0.9664419889450073, "GroupScore": 1.0, "Text": "August", "Type": "DATE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 0.9999549984931946, "Negative": 3.999999989900971e-06, "Neutral": 4.099999932805076e-05, "Mixed": 0.0 } }, "BeginOffset": 50, "EndOffset": 56 } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "Score": 0.9803199768066406, "GroupScore": 1.0, "Text": "temperature", "Type": "ATTRIBUTE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Positive": 1.0, "Negative": 0.0, "Neutral": 0.0, "Mixed": 0.0 } }, "BeginOffset": 77, "EndOffset": 88 } ] } ] }For more information, see Targeted Sentiment in the Amazon Comprehend Developer Guide. - 
                    For API details, see DetectTargetedSentiment in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use import-model.
- AWS CLI
- 
             
                    To import a model The following import-modelexample imports a model from a different AWS account. The document classifier model in account444455556666has a resource-based policy allowing account111122223333to import the model.aws comprehend import-model \ --source-model-arnarn:aws:comprehend:us-west-2:444455556666:document-classifier/example-classifierOutput: { "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier" }For more information, see Copying custom models between AWS accounts in the Amazon Comprehend Developer Guide. - 
                    For API details, see ImportModel in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-datasets.
- AWS CLI
- 
             
                    To list all flywheel datasets The following list-datasetsexample lists all datasets associated with a flywheel.aws comprehend list-datasets \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entityOutput: { "DatasetPropertiesList": [ { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-1", "DatasetName": "example-dataset-1", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-1/20230616T203710Z/", "Status": "CREATING", "CreationTime": "2023-06-16T20:37:10.400000+00:00" }, { "DatasetArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity/dataset/example-dataset-2", "DatasetName": "example-dataset-2", "DatasetType": "TRAIN", "DatasetS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/datasets/example-dataset-2/20230616T200607Z/", "Description": "TRAIN Dataset created by Flywheel creation.", "Status": "COMPLETED", "NumberOfDocuments": 5572, "CreationTime": "2023-06-16T20:06:07.722000+00:00" } ] }For more information, see Flywheel Overview in Amazon Comprehend Developer Guide. - 
                    For API details, see ListDatasets in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-document-classification-jobs.
- AWS CLI
- 
             
                    To list of all document classification jobs The following list-document-classification-jobsexample lists all document classification jobs.aws comprehend list-document-classification-jobsOutput: { "DocumentClassificationJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "exampleclassificationjob", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:09:51.788000+00:00", "EndTime": "2023-06-14T17:15:58.582000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/1234567890101-CLN-e758dd56b824aa717ceab551f11749fb/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classification-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "exampleclassificationjob2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-14T17:22:39.829000+00:00", "EndTime": "2023-06-14T17:28:46.107000+00:00", "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:1234567890101:document-classifier/mymodel/version/12", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/jobdata/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/1234567890101-CLN-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::1234567890101:role/service-role/AmazonComprehendServiceRole-example-role" } ] }For more information, see Custom Classification in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListDocumentClassificationJobs in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-document-classifier-summaries.
- AWS CLI
- 
             
                    To list the summaries of all created document classifiers The following list-document-classifier-summariesexample lists all created document classifier summaries.aws comprehend list-document-classifier-summariesOutput: { "DocumentClassifierSummariesList": [ { "DocumentClassifierName": "example-classifier-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-13T22:07:59.825000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" }, { "DocumentClassifierName": "example-classifier-2", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-13T21:54:59.589000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "TRAINED" } ] }For more information, see Creating and managing custom models in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListDocumentClassifierSummaries in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-document-classifiers.
- AWS CLI
- 
             
                    To list of all document classifiers The following list-document-classifiersexample lists all trained and in-training document classifier models.aws comprehend list-document-classifiersOutput: { "DocumentClassifierPropertiesList": [ { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-13T19:04:15.735000+00:00", "EndTime": "2023-06-13T19:42:31.752000+00:00", "TrainingStartTime": "2023-06-13T19:08:20.114000+00:00", "TrainingEndTime": "2023-06-13T19:41:35.080000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "ClassifierMetadata": { "NumberOfLabels": 3, "NumberOfTrainedDocuments": 5016, "NumberOfTestDocuments": 557, "EvaluationMetrics": { "Accuracy": 0.9856, "Precision": 0.9919, "Recall": 0.9459, "F1Score": 0.9673, "MicroPrecision": 0.9856, "MicroRecall": 0.9856, "MicroF1Score": 0.9856, "HammingLoss": 0.0144 } }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" }, { "DocumentClassifierArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "LanguageCode": "en", "Status": "TRAINING", "SubmitTime": "2023-06-13T21:20:28.690000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata" }, "OutputDataConfig": {}, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-testorle", "Mode": "MULTI_CLASS" } ] }For more information, see Creating and managing custom models in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListDocumentClassifiers in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-dominant-language-detection-jobs.
- AWS CLI
- 
             
                    To list all dominant language detection jobs The following list-dominant-language-detection-jobsexample lists all in-progress and completed asynchronous dominant language detection jobs.aws comprehend list-dominant-language-detection-jobsOutput: { "DominantLanguageDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:10:38.037000+00:00", "EndTime": "2023-06-09T18:18:45.498000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "languageanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-09T18:16:33.690000+00:00", "EndTime": "2023-06-09T18:24:40.608000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-LANGUAGE-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListDominantLanguageDetectionJobs in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-endpoints.
- AWS CLI
- 
             
                    To list of all endpoints The following list-endpointsexample lists all active model-specific endpoints.aws comprehend list-endpointsOutput: { "EndpointPropertiesList": [ { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier1", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" }, { "EndpointArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/ExampleClassifierEndpoint2", "Status": "IN_SERVICE", "ModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2", "DesiredInferenceUnits": 1, "CurrentInferenceUnits": 1, "CreationTime": "2023-06-13T20:32:54.526000+00:00", "LastModifiedTime": "2023-06-13T20:32:54.526000+00:00" } ] }For more information, see Managing Amazon Comprehend endpoints in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListEndpoints in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-entities-detection-jobs.
- AWS CLI
- 
             
                    To list all entities detection jobs The following list-entities-detection-jobsexample lists all asynchronous entities detection jobs.aws comprehend list-entities-detection-jobsOutput: { "EntitiesDetectionJobPropertiesList": [ { "JobId": "468af39c28ab45b83eb0c4ab9EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/468af39c28ab45b83eb0c4ab9EXAMPLE", "JobName": "example-entities-detection", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T20:57:46.476000+00:00", "EndTime": "2023-06-08T21:05:53.718000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-468af39c28ab45b83eb0c4ab9EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "809691caeaab0e71406f80a28EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/809691caeaab0e71406f80a28EXAMPLE", "JobName": "example-entities-detection-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T21:30:15.323000+00:00", "EndTime": "2023-06-08T21:40:23.509000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-809691caeaab0e71406f80a28EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "e00597c36b448b91d70dea165EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/e00597c36b448b91d70dea165EXAMPLE", "JobName": "example-entities-detection-3", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:19:28.528000+00:00", "EndTime": "2023-06-08T22:27:33.991000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-NER-e00597c36b448b91d70dea165EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }For more information, see Entities in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListEntitiesDetectionJobs in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-entity-recognizer-summaries.
- AWS CLI
- 
             
                    To list of summaries for all created entity recognizers The following list-entity-recognizer-summariesexample lists all entity recognizer summaries.aws comprehend list-entity-recognizer-summariesOutput: { "EntityRecognizerSummariesList": [ { "RecognizerName": "entity-recognizer-3", "NumberOfVersions": 2, "LatestVersionCreatedAt": "2023-06-15T23:15:07.621000+00:00", "LatestVersionName": "2", "LatestVersionStatus": "STOP_REQUESTED" }, { "RecognizerName": "entity-recognizer-2", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T22:55:27.805000+00:00", "LatestVersionName": "2" "LatestVersionStatus": "TRAINED" }, { "RecognizerName": "entity-recognizer-1", "NumberOfVersions": 1, "LatestVersionCreatedAt": "2023-06-14T20:44:59.631000+00:00", "LatestVersionName": "1", "LatestVersionStatus": "TRAINED" } ] }For more information, see Custom entity recognition in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListEntityRecognizerSummaries in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-entity-recognizers.
- AWS CLI
- 
             
                    To list of all custom entity recognizers The following list-entity-recognizersexample lists all created custom entity recognizers.aws comprehend list-entity-recognizersOutput: { "EntityRecognizerPropertiesList": [ { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/EntityRecognizer/version/1", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T20:44:59.631000+00:00", "EndTime": "2023-06-14T20:59:19.532000+00:00", "TrainingStartTime": "2023-06-14T20:48:52.811000+00:00", "TrainingEndTime": "2023-06-14T20:58:11.473000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "BUSINESS" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/dataset/", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 1814, "NumberOfTestDocuments": 486, "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "EntityTypes": [ { "Type": "BUSINESS", "EvaluationMetrics": { "Precision": 100.0, "Recall": 100.0, "F1Score": 100.0 }, "NumberOfTrainMentions": 1520 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole", "VersionName": "1" }, { "EntityRecognizerArn": "arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer3", "LanguageCode": "en", "Status": "TRAINED", "SubmitTime": "2023-06-14T22:57:51.056000+00:00", "EndTime": "2023-06-14T23:14:13.894000+00:00", "TrainingStartTime": "2023-06-14T23:01:33.984000+00:00", "TrainingEndTime": "2023-06-14T23:13:02.984000+00:00", "InputDataConfig": { "DataFormat": "COMPREHEND_CSV", "EntityTypes": [ { "Type": "DEVICE" } ], "Documents": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/raw_txt.csv", "InputFormat": "ONE_DOC_PER_LINE" }, "EntityList": { "S3Uri": "s3://amzn-s3-demo-bucket/trainingdata/entity_list.csv" } }, "RecognizerMetadata": { "NumberOfTrainedDocuments": 4616, "NumberOfTestDocuments": 3489, "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "EntityTypes": [ { "Type": "DEVICE", "EvaluationMetrics": { "Precision": 98.54227405247813, "Recall": 100.0, "F1Score": 99.26578560939794 }, "NumberOfTrainMentions": 2764 } ] }, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole" } ] }For more information, see Custom entity recognition in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListEntityRecognizers in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-events-detection-jobs.
- AWS CLI
- 
             
                    To list all events detection jobs The following list-events-detection-jobsexample lists all asynchronous events detection jobs.aws comprehend list-events-detection-jobsOutput: { "EventsDetectionJobPropertiesList": [ { "JobId": "aa9593f9203e84f3ef032ce18EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/aa9593f9203e84f3ef032ce18EXAMPLE", "JobName": "events_job_1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:14:57.751000+00:00", "EndTime": "2023-06-12T19:21:04.962000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/1111222233333-EVENTS-aa9593f9203e84f3ef032ce18EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] }, { "JobId": "4a990a2f7e82adfca6e171135EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:1111222233333:events-detection-job/4a990a2f7e82adfca6e171135EXAMPLE", "JobName": "events_job_2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-12T19:55:43.702000+00:00", "EndTime": "2023-06-12T20:03:49.893000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/EventsData/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/1111222233333-EVENTS-4a990a2f7e82adfca6e171135EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::1111222233333:role/service-role/AmazonComprehendServiceRole-example-role", "TargetEventTypes": [ "BANKRUPTCY", "EMPLOYMENT", "CORPORATE_ACQUISITION", "CORPORATE_MERGER", "INVESTMENT_GENERAL" ] } ] }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListEventsDetectionJobs in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-flywheel-iteration-history.
- AWS CLI
- 
             
                    To list all flywheel iteration history The following list-flywheel-iteration-historyexample lists all iterations of a flywheel.aws comprehend list-flywheel-iteration-history --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheelOutput: { "FlywheelIterationPropertiesList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "20230619TEXAMPLE", "CreationTime": "2023-06-19T04:00:32.594000+00:00", "EndTime": "2023-06-19T04:00:49.248000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9876464664646313, "AveragePrecision": 0.9800000253081214, "AverageRecall": 0.9445600253081214, "AverageAccuracy": 0.9997281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-bucket/example-flywheel/schemaVersion=1/20230619TEXAMPLE/evaluation/20230619TEXAMPLE/" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "FlywheelIterationId": "20230616TEXAMPLE", "CreationTime": "2023-06-16T21:10:26.385000+00:00", "EndTime": "2023-06-16T23:33:16.827000+00:00", "Status": "COMPLETED", "Message": "FULL_ITERATION: Flywheel iteration performed all functions successfully.", "EvaluatedModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/spamvshamclassify/version/1", "EvaluatedModelMetrics": { "AverageF1Score": 0.7742663922375772, "AverageF1Score": 0.9767700253081214, "AveragePrecision": 0.9767700253081214, "AverageRecall": 0.9767700253081214, "AverageAccuracy": 0.9858281665190434 }, "EvaluationManifestS3Prefix": "s3://amzn-s3-demo-bucket/example-flywheel-2/schemaVersion=1/20230616TEXAMPLE/evaluation/20230616TEXAMPLE/" } ] }For more information, see Flywheel overview in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListFlywheelIterationHistory in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-flywheels.
- AWS CLI
- 
             
                    To list all flywheels The following list-flywheelsexample lists all created flywheels.aws comprehend list-flywheelsOutput: { "FlywheelSummaryList": [ { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier/version/1", "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel-1/schemaVersion=1/20230616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" }, { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-2", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/exampleclassifier2/version/1", "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/example-flywheel-2/schemaVersion=1/20220616T200543Z/", "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2022-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2022-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20220619T040032Z" } ] }For more information, see Flywheel overview in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListFlywheels in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-key-phrases-detection-jobs.
- AWS CLI
- 
             
                    To list all key phrases detection jobs The following list-key-phrases-detection-jobsexample lists all in-progress and completed asynchronous key phrases detection jobs.aws comprehend list-key-phrases-detection-jobsOutput: { "KeyPhrasesDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "keyphrasesanalysis1", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-08T22:31:43.767000+00:00", "EndTime": "2023-06-08T22:39:52.565000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a33EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a33EXAMPLE", "JobName": "keyphrasesanalysis2", "JobStatus": "STOPPED", "SubmitTime": "2023-06-08T22:57:52.154000+00:00", "EndTime": "2023-06-08T23:05:48.385000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a33EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a44EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a44EXAMPLE", "JobName": "keyphrasesanalysis3", "JobStatus": "FAILED", "Message": "NO_READ_ACCESS_TO_INPUT: The provided data access role does not have proper access to the input data.", "SubmitTime": "2023-06-09T16:47:04.029000+00:00", "EndTime": "2023-06-09T16:47:18.413000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-KP-123456abcdeb0e11022f22a44EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListKeyPhrasesDetectionJobs in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-pii-entities-detection-jobs.
- AWS CLI
- 
             
                    To list all pii entities detection jobs The following list-pii-entities-detection-jobsexample lists all in-progress and completed asynchronous pii detection jobs.aws comprehend list-pii-entities-detection-jobsOutput: { "PiiEntitiesDetectionJobPropertiesList": [ { "JobId": "6f9db0c42d0c810e814670ee4EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/6f9db0c42d0c810e814670ee4EXAMPLE", "JobName": "example-pii-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:02:46.241000+00:00", "EndTime": "2023-06-09T21:12:52.602000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-source-bucket/111122223333-PII-6f9db0c42d0c810e814670ee4EXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" }, { "JobId": "d927562638cfa739331a99b3cEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/d927562638cfa739331a99b3cEXAMPLE", "JobName": "example-pii-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T21:20:58.211000+00:00", "EndTime": "2023-06-09T21:31:06.027000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/AsyncBatchJobs/", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-PII-d927562638cfa739331a99b3cEXAMPLE/output/" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "Mode": "ONLY_OFFSETS" } ] }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListPiiEntitiesDetectionJobs in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-sentiment-detection-jobs.
- AWS CLI
- 
             
                    To list all sentiment detection jobs The following list-sentiment-detection-jobsexample lists all in-progress and completed asynchronous sentiment detection jobs.aws comprehend list-sentiment-detection-jobsOutput: { "SentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-sentiment-detection-job", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListSentimentDetectionJobs in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-tags-for-resource.
- AWS CLI
- 
             
                    To list tags for resource The following list-tags-for-resourceexample lists the tags for an Amazon Comprehend resource.aws comprehend list-tags-for-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1Output: { "ResourceArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1", "Tags": [ { "Key": "Department", "Value": "Finance" }, { "Key": "location", "Value": "Seattle" } ] }For more information, see Tagging your resources in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListTagsForResource in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-targeted-sentiment-detection-jobs.
- AWS CLI
- 
             
                    To list all targeted sentiment detection jobs The following list-targeted-sentiment-detection-jobsexample lists all in-progress and completed asynchronous targeted sentiment detection jobs.aws comprehend list-targeted-sentiment-detection-jobsOutput: { "TargetedSentimentDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName": "example-targeted-sentiment-detection-job", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T22:42:20.545000+00:00", "EndTime": "2023-06-09T22:52:27.416000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "example-targeted-sentiment-detection-job-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T23:16:15.956000+00:00", "EndTime": "2023-06-09T23:26:00.168000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket/MovieData2", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/testfolder/111122223333-TS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "LanguageCode": "en", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListTargetedSentimentDetectionJobs in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use list-topics-detection-jobs.
- AWS CLI
- 
             
                    To list all topic detection jobs The following list-topics-detection-jobsexample lists all in-progress and completed asynchronous topics detection jobs.aws comprehend list-topics-detection-jobsOutput: { "TopicsDetectionJobPropertiesList": [ { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobName" "topic-analysis-1" "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:40:35.384000+00:00", "EndTime": "2023-06-09T18:46:41.936000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a11EXAMPLE/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE2", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE2", "JobName": "topic-analysis-2", "JobStatus": "COMPLETED", "SubmitTime": "2023-06-09T18:44:43.414000+00:00", "EndTime": "2023-06-09T18:50:50.872000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE2/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" }, { "JobId": "123456abcdeb0e11022f22a1EXAMPLE3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:topics-detection-job/123456abcdeb0e11022f22a1EXAMPLE3", "JobName": "topic-analysis-2", "JobStatus": "IN_PROGRESS", "SubmitTime": "2023-06-09T18:50:56.737000+00:00", "InputDataConfig": { "S3Uri": "s3://amzn-s3-demo-bucket", "InputFormat": "ONE_DOC_PER_LINE" }, "OutputDataConfig": { "S3Uri": "s3://amzn-s3-demo-destination-bucket/thefolder/111122223333-TOPICS-123456abcdeb0e11022f22a1EXAMPLE3/output/output.tar.gz" }, "NumberOfTopics": 10, "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role" } ] }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see ListTopicsDetectionJobs in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use put-resource-policy.
- AWS CLI
- 
             
                    To attach a resource-based policy The following put-resource-policyexample attaches a resource-based policy to a model so that can be imported by another AWS account. The policy is attached to the model in account111122223333and allows account444455556666import the model.aws comprehend put-resource-policy \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1\ --resource-policy '{"Version":"2012-10-17", "Statement":[{"Effect":"Allow","Action":"comprehend:ImportModel","Resource":"*","Principal":{"AWS":["arn:aws:iam::444455556666:root"]}}]}'Ouput: { "PolicyRevisionId": "aaa111d069d07afaa2aa3106aEXAMPLE" }For more information, see Copying custom models between AWS accounts in the Amazon Comprehend Developer Guide. - 
                    For API details, see PutResourcePolicy in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use start-document-classification-job.
- AWS CLI
- 
             
                    To start document classification job The following start-document-classification-jobexample starts a document classification job with a custom model on all of the files at the address specified by the--input-data-configtag. In this example, the input S3 bucket containsSampleSMStext1.txt,SampleSMStext2.txt, andSampleSMStext3.txt. The model was previously trained on document classifications of spam and non-spam, or, "ham", SMS messages. When the job is complete,output.tar.gzis put at the location specified by the--output-data-configtag.output.tar.gzcontainspredictions.jsonlwhich lists the classification of each document. The Json output is printed on one line per file, but is formatted here for readability.aws comprehend start-document-classification-job \ --job-nameexampleclassificationjob\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket-INPUT/jobdata/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/mymodel/version/12Contents of SampleSMStext1.txt:"CONGRATULATIONS! TXT 2155550100 to win $5000"Contents of SampleSMStext2.txt:"Hi, when do you want me to pick you up from practice?"Contents of SampleSMStext3.txt:"Plz send bank account # to 2155550100 to claim prize!!"Output: { "JobId": "e758dd56b824aa717ceab551fEXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:document-classification-job/e758dd56b824aa717ceab551fEXAMPLE", "JobStatus": "SUBMITTED" }Contents of predictions.jsonl:{"File": "SampleSMSText1.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]} {"File": "SampleSMStext2.txt", "Line": "0", "Classes": [{"Name": "ham", "Score": 0.9994}, {"Name": "spam", "Score": 0.0006}]} {"File": "SampleSMSText3.txt", "Line": "0", "Classes": [{"Name": "spam", "Score": 0.9999}, {"Name": "ham", "Score": 0.0001}]}For more information, see Custom Classification in the Amazon Comprehend Developer Guide. - 
                    For API details, see StartDocumentClassificationJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use start-dominant-language-detection-job.
- AWS CLI
- 
             
                    To start an asynchronous language detection job The following start-dominant-language-detection-jobexample starts an asynchronous language detection job for all of the files located at the address specified by the--input-data-configtag. The S3 bucket in this example containsSampletext1.txt. When the job is complete, the folder,output, is placed in the location specified by the--output-data-configtag. The folder containsoutput.txtwhich contains the dominant language of each of the text files as well as the pre-trained model's confidence score for each prediction.aws comprehend start-dominant-language-detection-job \ --job-nameexample_language_analysis_job\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeenContents of Sampletext1.txt: "Physics is the natural science that involves the study of matter and its motion and behavior through space and time, along with related concepts such as energy and force."Output: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:dominant-language-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Contents of output.txt:{"File": "Sampletext1.txt", "Languages": [{"LanguageCode": "en", "Score": 0.9913753867149353}], "Line": 0}For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StartDominantLanguageDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use start-entities-detection-job.
- AWS CLI
- 
             
                    Example 1: To start a standard entity detection job using the pre-trained model The following start-entities-detection-jobexample starts an asynchronous entities detection job for all files located at the address specified by the--input-data-configtag. The S3 bucket in this example containsSampletext1.txt,Sampletext2.txt, andSampletext3.txt. When the job is complete, the folder,output, is placed in the location specified by the--output-data-configtag. The folder containsoutput.txtwhich lists all of the named entities detected within each text file as well as the pre-trained model's confidence score for each prediction. The Json output is printed on one line per input file, but is formatted here for readability.aws comprehend start-entities-detection-job \ --job-nameentitiestest\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeenContents of Sampletext1.txt:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."Contents of Sampletext2.txt:"Dear Max, based on your autopay settings for your account example1.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "Contents of Sampletext3.txt:"Jane, please submit any customer feedback from this weekend to AnySpa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."Output: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Contents of output.txtwith line indents for readability:{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9994006636420306, "Text": "Zhang Wei", "Type": "PERSON" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9976647915128143, "Text": "John", "Type": "PERSON" }, { "BeginOffset": 33, "EndOffset": 67, "Score": 0.9984608700836206, "Text": "AnyCompany Financial Services, LLC", "Type": "ORGANIZATION" }, { "BeginOffset": 88, "EndOffset": 107, "Score": 0.9868521019555556, "Text": "1111-XXXX-1111-XXXX", "Type": "OTHER" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.998242565709204, "Text": "$24.53", "Type": "QUANTITY" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9993039263159287, "Text": "July 31st", "Type": "DATE" } ], "File": "SampleText1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Score": 0.9866232147545232, "Text": "Max", "Type": "PERSON" }, { "BeginOffset": 156, "EndOffset": 166, "Score": 0.9797723450933329, "Text": "XXXXXX1111", "Type": "OTHER" }, { "BeginOffset": 191, "EndOffset": 200, "Score": 0.9247838572396843, "Text": "XXXXX0000", "Type": "OTHER" } ], "File": "SampleText2.txt", "Line": 0 } { "Entities": [ { "Score": 0.9990532994270325, "Type": "PERSON", "Text": "Jane", "BeginOffset": 0, "EndOffset": 4 }, { "Score": 0.9519651532173157, "Type": "DATE", "Text": "this weekend", "BeginOffset": 47, "EndOffset": 59 }, { "Score": 0.5566426515579224, "Type": "ORGANIZATION", "Text": "AnySpa", "BeginOffset": 63, "EndOffset": 69 }, { "Score": 0.8059805631637573, "Type": "LOCATION", "Text": "123 Main St, Anywhere", "BeginOffset": 71, "EndOffset": 92 }, { "Score": 0.998830258846283, "Type": "PERSON", "Text": "Alice", "BeginOffset": 114, "EndOffset": 119 }, { "Score": 0.997818112373352, "Type": "OTHER", "Text": "AnySpa@example.com", "BeginOffset": 123, "EndOffset": 138 } ], "File": "SampleText3.txt", "Line": 0 }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. Example 2: To start a custom entity detection job The following start-entities-detection-jobexample starts an asynchronous custom entities detection job for all files located at the address specified by the--input-data-configtag. In this example, the S3 bucket in this example containsSampleFeedback1.txt,SampleFeedback2.txt, andSampleFeedback3.txt. The entity recognizer model was trained on customer support Feedbacks to recognize device names. When the job is complete, an the folder,output, is put at the location specified by the--output-data-configtag. The folder containsoutput.txt, which lists all of the named entities detected within each text file as well as the pre-trained model's confidence score for each prediction. The Json output is printed on one line per file, but is formatted here for readability.aws comprehend start-entities-detection-job \ --job-namecustomentitiestest\ --entity-recognizer-arn"arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/entityrecognizer"\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/jobdata/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arn"arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-IOrole"Contents of SampleFeedback1.txt:"I've been on the AnyPhone app have had issues for 24 hours when trying to pay bill. Cannot make payment. Sigh. | Oh man! Lets get that app up and running. DM me, and we can get to work!"Contents of SampleFeedback2.txt:"Hi, I have a discrepancy with my new bill. Could we get it sorted out? A rep added stuff I didnt sign up for when I did my AnyPhone 10 upgrade. | We can absolutely get this sorted!"Contents of SampleFeedback3.txt:"Is the by 1 get 1 free AnySmartPhone promo still going on? | Hi Christian! It ended yesterday, send us a DM if you have any questions and we can take a look at your options!"Output: { "JobId": "019ea9edac758806850fa8a79ff83021", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:entities-detection-job/019ea9edac758806850fa8a79ff83021", "JobStatus": "SUBMITTED" }Contents of output.txtwith line indents for readability:{ "Entities": [ { "BeginOffset": 17, "EndOffset": 25, "Score": 0.9999728210205924, "Text": "AnyPhone", "Type": "DEVICE" } ], "File": "SampleFeedback1.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 123, "EndOffset": 133, "Score": 0.9999892116761524, "Text": "AnyPhone 10", "Type": "DEVICE" } ], "File": "SampleFeedback2.txt", "Line": 0 } { "Entities": [ { "BeginOffset": 23, "EndOffset": 35, "Score": 0.9999971389852362, "Text": "AnySmartPhone", "Type": "DEVICE" } ], "File": "SampleFeedback3.txt", "Line": 0 }For more information, see Custom entity recognition in the Amazon Comprehend Developer Guide. - 
                    For API details, see StartEntitiesDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use start-events-detection-job.
- AWS CLI
- 
             
                    To start an asynchronous events detection job The following start-events-detection-jobexample starts an asynchronous events detection job for all files located at the address specified by the--input-data-configtag. Possible target event types includeBANKRUPCTY,EMPLOYMENT,CORPORATE_ACQUISITION,INVESTMENT_GENERAL,CORPORATE_MERGER,IPO,RIGHTS_ISSUE,SECONDARY_OFFERING,SHELF_OFFERING,TENDER_OFFERING, andSTOCK_SPLIT. The S3 bucket in this example containsSampleText1.txt,SampleText2.txt, andSampleText3.txt. When the job is complete, the folder,output, is placed in the location specified by the--output-data-configtag. The folder containsSampleText1.txt.out,SampleText2.txt.out, andSampleText3.txt.out. The JSON output is printed on one line per file, but is formatted here for readability.aws comprehend start-events-detection-job \ --job-nameevents-detection-1\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/EventsData"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-servicerole\ --language-codeen\ --target-event-types"BANKRUPTCY""EMPLOYMENT""CORPORATE_ACQUISITION""CORPORATE_MERGER""INVESTMENT_GENERAL"Contents of SampleText1.txt:"Company AnyCompany grew by increasing sales and through acquisitions. After purchasing competing firms in 2020, AnyBusiness, a part of the AnyBusinessGroup, gave Jane Does firm a going rate of one cent a gallon or forty-two cents a barrel."Contents of SampleText2.txt:"In 2021, AnyCompany officially purchased AnyBusiness for 100 billion dollars, surprising and exciting the shareholders."Contents of SampleText3.txt:"In 2022, AnyCompany stock crashed 50. Eventually later that year they filed for bankruptcy."Output: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:events-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Contents of SampleText1.txt.outwith line indents for readability:{ "Entities": [ { "Mentions": [ { "BeginOffset": 8, "EndOffset": 18, "Score": 0.99977, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 112, "EndOffset": 123, "Score": 0.999747, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 0.979826 }, { "BeginOffset": 171, "EndOffset": 175, "Score": 0.999615, "Text": "firm", "Type": "ORGANIZATION", "GroupScore": 0.871647 } ] }, { "Mentions": [ { "BeginOffset": 97, "EndOffset": 102, "Score": 0.987687, "Text": "firms", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 103, "EndOffset": 110, "Score": 0.999458, "Text": "in 2020", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 160, "EndOffset": 168, "Score": 0.999649, "Text": "John Doe", "Type": "PERSON", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 0, "Role": "INVESTOR", "Score": 0.99977 } ], "Triggers": [ { "BeginOffset": 56, "EndOffset": 68, "Score": 0.999967, "Text": "acquisitions", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] }, { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 1, "Role": "INVESTEE", "Score": 0.987687 }, { "EntityIndex": 2, "Role": "DATE", "Score": 0.999458 }, { "EntityIndex": 3, "Role": "INVESTOR", "Score": 0.999649 } ], "Triggers": [ { "BeginOffset": 76, "EndOffset": 86, "Score": 0.999973, "Text": "purchasing", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText1.txt", "Line": 0 }Contents of SampleText2.txt.out:{ "Entities": [ { "Mentions": [ { "BeginOffset": 0, "EndOffset": 7, "Score": 0.999473, "Text": "In 2021", "Type": "DATE", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999636, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 45, "EndOffset": 56, "Score": 0.999712, "Text": "AnyBusiness", "Type": "ORGANIZATION", "GroupScore": 1 } ] }, { "Mentions": [ { "BeginOffset": 61, "EndOffset": 80, "Score": 0.998886, "Text": "100 billion dollars", "Type": "MONETARY_VALUE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "CORPORATE_ACQUISITION", "Arguments": [ { "EntityIndex": 3, "Role": "AMOUNT", "Score": 0.998886 }, { "EntityIndex": 2, "Role": "INVESTEE", "Score": 0.999712 }, { "EntityIndex": 0, "Role": "DATE", "Score": 0.999473 }, { "EntityIndex": 1, "Role": "INVESTOR", "Score": 0.999636 } ], "Triggers": [ { "BeginOffset": 31, "EndOffset": 40, "Score": 0.99995, "Text": "purchased", "Type": "CORPORATE_ACQUISITION", "GroupScore": 1 } ] } ], "File": "SampleText2.txt", "Line": 0 }Contents of SampleText3.txt.out:{ "Entities": [ { "Mentions": [ { "BeginOffset": 9, "EndOffset": 19, "Score": 0.999774, "Text": "AnyCompany", "Type": "ORGANIZATION", "GroupScore": 1 }, { "BeginOffset": 66, "EndOffset": 70, "Score": 0.995717, "Text": "they", "Type": "ORGANIZATION", "GroupScore": 0.997626 } ] }, { "Mentions": [ { "BeginOffset": 50, "EndOffset": 65, "Score": 0.999656, "Text": "later that year", "Type": "DATE", "GroupScore": 1 } ] } ], "Events": [ { "Type": "BANKRUPTCY", "Arguments": [ { "EntityIndex": 1, "Role": "DATE", "Score": 0.999656 }, { "EntityIndex": 0, "Role": "FILER", "Score": 0.995717 } ], "Triggers": [ { "BeginOffset": 81, "EndOffset": 91, "Score": 0.999936, "Text": "bankruptcy", "Type": "BANKRUPTCY", "GroupScore": 1 } ] } ], "File": "SampleText3.txt", "Line": 0 }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StartEventsDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use start-flywheel-iteration.
- AWS CLI
- 
             
                    To start a flywheel iteration The following start-flywheel-iterationexample starts a flywheel iteration. This operation uses any new datasets in the flywheel to train a new model version.aws comprehend start-flywheel-iteration \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheelOutput: { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel", "FlywheelIterationId": "12345123TEXAMPLE" }For more information, see Flywheel overview in the Amazon Comprehend Developer Guide. - 
                    For API details, see StartFlywheelIteration in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use start-key-phrases-detection-job.
- AWS CLI
- 
             
                    To start a key phrases detection job The following start-key-phrases-detection-jobexample starts an asynchronous key phrases detection job for all files located at the address specified by the--input-data-configtag. The S3 bucket in this example containsSampletext1.txt,Sampletext2.txt, andSampletext3.txt. When the job is completed, the folder,output, is placed in the location specified by the--output-data-configtag. The folder contains the fileoutput.txtwhich contains all the key phrases detected within each text file and the pre-trained model's confidence score for each prediction. The Json output is printed on one line per file, but is formatted here for readability.aws comprehend start-key-phrases-detection-job \ --job-namekeyphrasesanalysistest1\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arn"arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role"\ --language-codeenContents of Sampletext1.txt:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."Contents of Sampletext2.txt:"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "Contents of Sampletext3.txt:"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."Output: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Contents of output.txtwith line indents for readibility:{ "File": "SampleText1.txt", "KeyPhrases": [ { "BeginOffset": 6, "EndOffset": 15, "Score": 0.9748965572679326, "Text": "Zhang Wei" }, { "BeginOffset": 22, "EndOffset": 26, "Score": 0.9997344722354619, "Text": "John" }, { "BeginOffset": 28, "EndOffset": 62, "Score": 0.9843791074032948, "Text": "Your AnyCompany Financial Services" }, { "BeginOffset": 64, "EndOffset": 107, "Score": 0.8976122401721824, "Text": "LLC credit card account 1111-XXXX-1111-XXXX" }, { "BeginOffset": 112, "EndOffset": 129, "Score": 0.9999612982629748, "Text": "a minimum payment" }, { "BeginOffset": 133, "EndOffset": 139, "Score": 0.99975728947036, "Text": "$24.53" }, { "BeginOffset": 155, "EndOffset": 164, "Score": 0.9940866241449973, "Text": "July 31st" } ], "Line": 0 } { "File": "SampleText2.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.9974021100118472, "Text": "Dear Max" }, { "BeginOffset": 19, "EndOffset": 40, "Score": 0.9961120519515884, "Text": "your autopay settings" }, { "BeginOffset": 45, "EndOffset": 78, "Score": 0.9980620070116009, "Text": "your account Internet.org account" }, { "BeginOffset": 97, "EndOffset": 109, "Score": 0.999919660140754, "Text": "your payment" }, { "BeginOffset": 113, "EndOffset": 125, "Score": 0.9998370719754205, "Text": "the due date" }, { "BeginOffset": 131, "EndOffset": 166, "Score": 0.9955068678502509, "Text": "your bank account number XXXXXX1111" }, { "BeginOffset": 172, "EndOffset": 200, "Score": 0.8653433315829526, "Text": "the routing number XXXXX0000" } ], "Line": 0 } { "File": "SampleText3.txt", "KeyPhrases": [ { "BeginOffset": 0, "EndOffset": 4, "Score": 0.9142947833681668, "Text": "Jane" }, { "BeginOffset": 20, "EndOffset": 41, "Score": 0.9984325676596763, "Text": "any customer feedback" }, { "BeginOffset": 47, "EndOffset": 59, "Score": 0.9998782448150636, "Text": "this weekend" }, { "BeginOffset": 63, "EndOffset": 75, "Score": 0.99866741830757, "Text": "Sunshine Spa" }, { "BeginOffset": 77, "EndOffset": 88, "Score": 0.9695803485466054, "Text": "123 Main St" }, { "BeginOffset": 108, "EndOffset": 116, "Score": 0.9997065928550928, "Text": "comments" }, { "BeginOffset": 120, "EndOffset": 125, "Score": 0.9993466833825161, "Text": "Alice" }, { "BeginOffset": 129, "EndOffset": 144, "Score": 0.9654563612885667, "Text": "AnySpa@example.com" } ], "Line": 0 }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StartKeyPhrasesDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use start-pii-entities-detection-job.
- AWS CLI
- 
             
                    To start an asynchronous PII detection job The following start-pii-entities-detection-jobexample starts an asynchronous personal identifiable information (PII) entities detection job for all files located at the address specified by the--input-data-configtag. The S3 bucket in this example containsSampletext1.txt,Sampletext2.txt, andSampletext3.txt. When the job is complete, the folder,output, is placed in the location specified by the--output-data-configtag. The folder containsSampleText1.txt.out,SampleText2.txt.out, andSampleText3.txt.outwhich list the named entities within each text file. The Json output is printed on one line per file, but is formatted here for readability.aws comprehend start-pii-entities-detection-job \ --job-nameentities_test\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeen\ --modeONLY_OFFSETSContents of Sampletext1.txt:"Hello Zhang Wei, I am John. Your AnyCompany Financial Services, LLC credit card account 1111-XXXX-1111-XXXX has a minimum payment of $24.53 that is due by July 31st."Contents of Sampletext2.txt:"Dear Max, based on your autopay settings for your account Internet.org account, we will withdraw your payment on the due date from your bank account number XXXXXX1111 with the routing number XXXXX0000. "Contents of Sampletext3.txt:"Jane, please submit any customer feedback from this weekend to Sunshine Spa, 123 Main St, Anywhere and send comments to Alice at AnySpa@example.com."Output: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:pii-entities-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }Contents of SampleText1.txt.outwith line indents for readability:{ "Entities": [ { "BeginOffset": 6, "EndOffset": 15, "Type": "NAME", "Score": 0.9998490510222595 }, { "BeginOffset": 22, "EndOffset": 26, "Type": "NAME", "Score": 0.9998937958019426 }, { "BeginOffset": 88, "EndOffset": 107, "Type": "CREDIT_DEBIT_NUMBER", "Score": 0.9554297245278491 }, { "BeginOffset": 155, "EndOffset": 164, "Type": "DATE_TIME", "Score": 0.9999720462925257 } ], "File": "SampleText1.txt", "Line": 0 }Contents of SampleText2.txt.outwith line indents for readability:{ "Entities": [ { "BeginOffset": 5, "EndOffset": 8, "Type": "NAME", "Score": 0.9994390774924007 }, { "BeginOffset": 58, "EndOffset": 70, "Type": "URL", "Score": 0.9999958276922101 }, { "BeginOffset": 156, "EndOffset": 166, "Type": "BANK_ACCOUNT_NUMBER", "Score": 0.9999721058045592 }, { "BeginOffset": 191, "EndOffset": 200, "Type": "BANK_ROUTING", "Score": 0.9998968945989909 } ], "File": "SampleText2.txt", "Line": 0 }Contents of SampleText3.txt.outwith line indents for readability:{ "Entities": [ { "BeginOffset": 0, "EndOffset": 4, "Type": "NAME", "Score": 0.999949934606805 }, { "BeginOffset": 77, "EndOffset": 88, "Type": "ADDRESS", "Score": 0.9999035300466904 }, { "BeginOffset": 120, "EndOffset": 125, "Type": "NAME", "Score": 0.9998203838716296 }, { "BeginOffset": 129, "EndOffset": 144, "Type": "EMAIL", "Score": 0.9998313473105228 } ], "File": "SampleText3.txt", "Line": 0 }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StartPiiEntitiesDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use start-sentiment-detection-job.
- AWS CLI
- 
             
                    To start an asynchronous sentiment analysis job The following start-sentiment-detection-jobexample starts an asynchronous sentiment analysis detection job for all files located at the address specified by the--input-data-configtag. The S3 bucket folder in this example containsSampleMovieReview1.txt,SampleMovieReview2.txt, andSampleMovieReview3.txt. When the job is complete, the folder,output, is placed at the location specified by the--output-data-configtag. The folder contains the file,output.txt, which contains the prevailing sentiments for each text file and the pre-trained model's confidence score for each prediction. The Json output is printed on one line per file, but is formatted here for readability.aws comprehend start-sentiment-detection-job \ --job-nameexample-sentiment-detection-job\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/MovieData"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-roleContents of SampleMovieReview1.txt:"The film, AnyMovie2, is fairly predictable and just okay."Contents of SampleMovieReview2.txt:"AnyMovie2 is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."Contents of SampleMovieReview3.txt:"Don't get fooled by the 'awards' for AnyMovie2. All parts of the film were poorly stolen from other modern directors."Output: { "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }Contents of output.txtwith line of indents for readability:{ "File": "SampleMovieReview1.txt", "Line": 0, "Sentiment": "MIXED", "SentimentScore": { "Mixed": 0.6591159105300903, "Negative": 0.26492202281951904, "Neutral": 0.035430654883384705, "Positive": 0.04053137078881264 } } { "File": "SampleMovieReview2.txt", "Line": 0, "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000008718466233403888, "Negative": 0.00006134175055194646, "Neutral": 0.0002941041602753103, "Positive": 0.9996358156204224 } } { "File": "SampleMovieReview3.txt", "Line": 0, "Sentiment": "NEGATIVE", "SentimentScore": { "Mixed": 0.004146667663007975, "Negative": 0.9645107984542847, "Neutral": 0.016559595242142677, "Positive": 0.014782938174903393 } } }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StartSentimentDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use start-targeted-sentiment-detection-job.
- AWS CLI
- 
             
                    To start an asynchronous targeted sentiment analysis job The following start-targeted-sentiment-detection-jobexample starts an asynchronous targeted sentiment analysis detection job for all files located at the address specified by the--input-data-configtag. The S3 bucket folder in this example containsSampleMovieReview1.txt,SampleMovieReview2.txt, andSampleMovieReview3.txt. When the job is complete,output.tar.gzis placed at the location specified by the--output-data-configtag.output.tar.gzcontains the filesSampleMovieReview1.txt.out,SampleMovieReview2.txt.out, andSampleMovieReview3.txt.out, which each contain all of the named entities and associated sentiments for a single input text file.aws comprehend start-targeted-sentiment-detection-job \ --job-nametargeted_movie_review_analysis1\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/MovieData"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-roleContents of SampleMovieReview1.txt:"The film, AnyMovie, is fairly predictable and just okay."Contents of SampleMovieReview2.txt:"AnyMovie is the essential sci-fi film that I grew up watching when I was a kid. I highly recommend this movie."Contents of SampleMovieReview3.txt:"Don't get fooled by the 'awards' for AnyMovie. All parts of the film were poorly stolen from other modern directors."Output: { "JobId": "0b5001e25f62ebb40631a9a1a7fde7b3", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:targeted-sentiment-detection-job/0b5001e25f62ebb40631a9a1a7fde7b3", "JobStatus": "SUBMITTED" }Contents of SampleMovieReview1.txt.outwith line indents for readability:{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 4, "EndOffset": 8, "Score": 0.994972, "GroupScore": 1, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 10, "EndOffset": 18, "Score": 0.631368, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.001729, "Negative": 0.000001, "Neutral": 0.000318, "Positive": 0.997952 } } } ] } ], "File": "SampleMovieReview1.txt", "Line": 0 }Contents of SampleMovieReview2.txt.outline indents for readability:{ "Entities": [ { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 0, "EndOffset": 8, "Score": 0.854024, "GroupScore": 1, "Text": "AnyMovie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000007, "Positive": 0.999993 } } }, { "BeginOffset": 104, "EndOffset": 109, "Score": 0.999129, "GroupScore": 0.502937, "Text": "movie", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0, "Positive": 1 } } }, { "BeginOffset": 33, "EndOffset": 37, "Score": 0.999823, "GroupScore": 0.999252, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 0.000001, "Positive": 0.999999 } } } ] }, { "DescriptiveMentionIndex": [ 0, 1, 2 ], "Mentions": [ { "BeginOffset": 43, "EndOffset": 44, "Score": 0.999997, "GroupScore": 1, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 80, "EndOffset": 81, "Score": 0.999996, "GroupScore": 0.52523, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } }, { "BeginOffset": 67, "EndOffset": 68, "Score": 0.999994, "GroupScore": 0.999499, "Text": "I", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 75, "EndOffset": 78, "Score": 0.999978, "GroupScore": 1, "Text": "kid", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview2.txt", "Line": 0 }Contents of SampleMovieReview3.txt.outwith line indents for readibility:{ "Entities": [ { "DescriptiveMentionIndex": [ 1 ], "Mentions": [ { "BeginOffset": 64, "EndOffset": 68, "Score": 0.992953, "GroupScore": 0.999814, "Text": "film", "Type": "MOVIE", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000004, "Negative": 0.010425, "Neutral": 0.989543, "Positive": 0.000027 } } }, { "BeginOffset": 37, "EndOffset": 45, "Score": 0.999782, "GroupScore": 1, "Text": "AnyMovie", "Type": "ORGANIZATION", "MentionSentiment": { "Sentiment": "POSITIVE", "SentimentScore": { "Mixed": 0.000095, "Negative": 0.039847, "Neutral": 0.000673, "Positive": 0.959384 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 47, "EndOffset": 50, "Score": 0.999991, "GroupScore": 1, "Text": "All", "Type": "QUANTITY", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0.000001, "Negative": 0.000001, "Neutral": 0.999998, "Positive": 0 } } } ] }, { "DescriptiveMentionIndex": [ 0 ], "Mentions": [ { "BeginOffset": 106, "EndOffset": 115, "Score": 0.542083, "GroupScore": 1, "Text": "directors", "Type": "PERSON", "MentionSentiment": { "Sentiment": "NEUTRAL", "SentimentScore": { "Mixed": 0, "Negative": 0, "Neutral": 1, "Positive": 0 } } } ] } ], "File": "SampleMovieReview3.txt", "Line": 0 }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StartTargetedSentimentDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use start-topics-detection-job.
- AWS CLI
- 
             
                    To start a topics detection analysis job The following start-topics-detection-jobexample starts an asynchronous topics detection job for all files located at the address specified by the--input-data-configtag. When the job is complete, the folder,output, is placed at the location specified by the--ouput-data-configtag.outputcontains topic-terms.csv and doc-topics.csv. The first output file, topic-terms.csv, is a list of topics in the collection. For each topic, the list includes, by default, the top terms by topic according to their weight. The second file,doc-topics.csv, lists the documents associated with a topic and the proportion of the document that is concerned with the topic.aws comprehend start-topics-detection-job \ --job-nameexample_topics_detection_job\ --language-codeen\ --input-data-config"S3Uri=s3://amzn-s3-demo-bucket/"\ --output-data-config"S3Uri=s3://amzn-s3-demo-destination-bucket/testfolder/"\ --data-access-role-arnarn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role\ --language-codeenOutput: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE", "JobArn": "arn:aws:comprehend:us-west-2:111122223333:key-phrases-detection-job/123456abcdeb0e11022f22a11EXAMPLE", "JobStatus": "SUBMITTED" }For more information, see Topic Modeling in the Amazon Comprehend Developer Guide. - 
                    For API details, see StartTopicsDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use stop-dominant-language-detection-job.
- AWS CLI
- 
             
                    To stop an asynchronous dominant language detection job The following stop-dominant-language-detection-jobexample stops an in-progress, asynchronous dominant language detection job. If the current job state isIN_PROGRESSthe job is marked for termination and put into theSTOP_REQUESTEDstate. If the job completes before it can be stopped, it is put into theCOMPLETEDstate.aws comprehend stop-dominant-language-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StopDominantLanguageDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use stop-entities-detection-job.
- AWS CLI
- 
             
                    To stop an asynchronous entities detection job The following stop-entities-detection-jobexample stops an in-progress, asynchronous entities detection job. If the current job state isIN_PROGRESSthe job is marked for termination and put into theSTOP_REQUESTEDstate. If the job completes before it can be stopped, it is put into theCOMPLETEDstate.aws comprehend stop-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StopEntitiesDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use stop-events-detection-job.
- AWS CLI
- 
             
                    To stop an asynchronous events detection job The following stop-events-detection-jobexample stops an in-progress, asynchronous events detection job. If the current job state isIN_PROGRESSthe job is marked for termination and put into theSTOP_REQUESTEDstate. If the job completes before it can be stopped, it is put into theCOMPLETEDstate.aws comprehend stop-events-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StopEventsDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use stop-key-phrases-detection-job.
- AWS CLI
- 
             
                    To stop an asynchronous key phrases detection job The following stop-key-phrases-detection-jobexample stops an in-progress, asynchronous key phrases detection job. If the current job state isIN_PROGRESSthe job is marked for termination and put into theSTOP_REQUESTEDstate. If the job completes before it can be stopped, it is put into theCOMPLETEDstate.aws comprehend stop-key-phrases-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StopKeyPhrasesDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use stop-pii-entities-detection-job.
- AWS CLI
- 
             
                    To stop an asynchronous pii entities detection job The following stop-pii-entities-detection-jobexample stops an in-progress, asynchronous pii entities detection job. If the current job state isIN_PROGRESSthe job is marked for termination and put into theSTOP_REQUESTEDstate. If the job completes before it can be stopped, it is put into theCOMPLETEDstate.aws comprehend stop-pii-entities-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StopPiiEntitiesDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use stop-sentiment-detection-job.
- AWS CLI
- 
             
                    To stop an asynchronous sentiment detection job The following stop-sentiment-detection-jobexample stops an in-progress, asynchronous sentiment detection job. If the current job state isIN_PROGRESSthe job is marked for termination and put into theSTOP_REQUESTEDstate. If the job completes before it can be stopped, it is put into theCOMPLETEDstate.aws comprehend stop-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StopSentimentDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use stop-targeted-sentiment-detection-job.
- AWS CLI
- 
             
                    To stop an asynchronous targeted sentiment detection job The following stop-targeted-sentiment-detection-jobexample stops an in-progress, asynchronous targeted sentiment detection job. If the current job state isIN_PROGRESSthe job is marked for termination and put into theSTOP_REQUESTEDstate. If the job completes before it can be stopped, it is put into theCOMPLETEDstate.aws comprehend stop-targeted-sentiment-detection-job \ --job-id123456abcdeb0e11022f22a11EXAMPLEOutput: { "JobId": "123456abcdeb0e11022f22a11EXAMPLE, "JobStatus": "STOP_REQUESTED" }For more information, see Async analysis for Amazon Comprehend insights in the Amazon Comprehend Developer Guide. - 
                    For API details, see StopTargetedSentimentDetectionJob in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use stop-training-document-classifier.
- AWS CLI
- 
             
                    To stop the training of a document classifier model The following stop-training-document-classifierexample stops the training of a document classifier model while in-progress.aws comprehend stop-training-document-classifier --document-classifier-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifierThis command produces no output. For more information, see Creating and managing custom models in the Amazon Comprehend Developer Guide. - 
                    For API details, see StopTrainingDocumentClassifier in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use stop-training-entity-recognizer.
- AWS CLI
- 
             
                    To stop the training of an entity recognizer model The following stop-training-entity-recognizerexample stops the training of an entity recognizer model while in-progress.aws comprehend stop-training-entity-recognizer --entity-recognizer-arn"arn:aws:comprehend:us-west-2:111122223333:entity-recognizer/examplerecognizer1"This command produces no output. For more information, see Creating and managing custom models in the Amazon Comprehend Developer Guide. - 
                    For API details, see StopTrainingEntityRecognizer in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use tag-resource.
- AWS CLI
- 
             
                    Example 1: To tag a resource The following tag-resourceexample adds a single tag to an Amazon Comprehend resource.aws comprehend tag-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1\ --tagsKey=Location,Value=SeattleThis command has no output. For more information, see Tagging your resources in the Amazon Comprehend Developer Guide. Example 2: To add multiple tags to a resource The following tag-resourceexample adds multiple tags to an Amazon Comprehend resource.aws comprehend tag-resource \ --resource-arn"arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1"\ --tagsKey=location,Value=SeattleKey=Department,Value=FinanceThis command has no output. For more information, see Tagging your resources in the Amazon Comprehend Developer Guide. - 
                    For API details, see TagResource in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use untag-resource.
- AWS CLI
- 
             
                    Example 1: To remove a single tag from a resource The following untag-resourceexample removes a single tag from an Amazon Comprehend resource.aws comprehend untag-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1--tag-keysLocationThis command produces no output. For more information, see Tagging your resources in the Amazon Comprehend Developer Guide. Example 2: To remove multiple tags from a resource The following untag-resourceexample removes multiple tags from an Amazon Comprehend resource.aws comprehend untag-resource \ --resource-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/1--tag-keysLocationDepartmentThis command produces no output. For more information, see Tagging your resources in the Amazon Comprehend Developer Guide. - 
                    For API details, see UntagResource in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use update-endpoint.
- AWS CLI
- 
             
                    Example 1: To update an endpoint's inference units The following update-endpointexample updates information about an endpoint. In this example, the number of inference units is increased.aws comprehend update-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint--desired-inference-units2This command produces no output. For more information, see Managing Amazon Comprehend endpoints in the Amazon Comprehend Developer Guide. Example 2: To update an endpoint's actie model The following update-endpointexample updates information about an endpoint. In this example, the active model is changed.aws comprehend update-endpoint \ --endpoint-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier-endpoint/example-classifier-endpoint--active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier-newThis command produces no output. For more information, see Managing Amazon Comprehend endpoints in the Amazon Comprehend Developer Guide. - 
                    For API details, see UpdateEndpoint in AWS CLI Command Reference. 
 
- 
                    
The following code example shows how to use update-flywheel.
- AWS CLI
- 
             
                    To update a flywheel configuration The following update-flywheelexample updates a flywheel configuration. In this example, the active model for the flywheel is updated.aws comprehend update-flywheel \ --flywheel-arnarn:aws:comprehend:us-west-2:111122223333:flywheel/example-flywheel-1\ --active-model-arnarn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-modelOutput: { "FlywheelProperties": { "FlywheelArn": "arn:aws:comprehend:us-west-2:111122223333:flywheel/flywheel-entity", "ActiveModelArn": "arn:aws:comprehend:us-west-2:111122223333:document-classifier/example-classifier/version/new-example-classifier-model", "DataAccessRoleArn": "arn:aws:iam::111122223333:role/service-role/AmazonComprehendServiceRole-example-role", "TaskConfig": { "LanguageCode": "en", "DocumentClassificationConfig": { "Mode": "MULTI_CLASS" } }, "DataLakeS3Uri": "s3://amzn-s3-demo-bucket/flywheel-entity/schemaVersion=1/20230616T200543Z/", "DataSecurityConfig": {}, "Status": "ACTIVE", "ModelType": "DOCUMENT_CLASSIFIER", "CreationTime": "2023-06-16T20:05:43.242000+00:00", "LastModifiedTime": "2023-06-19T04:00:43.027000+00:00", "LatestFlywheelIteration": "20230619T040032Z" } }For more information, see Flywheel overview in the Amazon Comprehend Developer Guide. - 
                    For API details, see UpdateFlywheel in AWS CLI Command Reference. 
 
-