Wählen Sie Ihre Cookie-Einstellungen aus

Wir verwenden essentielle Cookies und ähnliche Tools, die für die Bereitstellung unserer Website und Services erforderlich sind. Wir verwenden Performance-Cookies, um anonyme Statistiken zu sammeln, damit wir verstehen können, wie Kunden unsere Website nutzen, und Verbesserungen vornehmen können. Essentielle Cookies können nicht deaktiviert werden, aber Sie können auf „Anpassen“ oder „Ablehnen“ klicken, um Performance-Cookies abzulehnen.

Wenn Sie damit einverstanden sind, verwenden AWS und zugelassene Drittanbieter auch Cookies, um nützliche Features der Website bereitzustellen, Ihre Präferenzen zu speichern und relevante Inhalte, einschließlich relevanter Werbung, anzuzeigen. Um alle nicht notwendigen Cookies zu akzeptieren oder abzulehnen, klicken Sie auf „Akzeptieren“ oder „Ablehnen“. Um detailliertere Entscheidungen zu treffen, klicken Sie auf „Anpassen“.

Amazon Personalize Runtime-Beispiele mit SDK for Java 2.x - AWS SDK for Java 2.x

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Amazon Personalize Runtime-Beispiele mit SDK for Java 2.x

Die folgenden Codebeispiele zeigen Ihnen, wie Sie mithilfe von Amazon Personalize Runtime Aktionen ausführen und allgemeine Szenarien implementieren. AWS SDK for Java 2.x

Aktionen sind Codeauszüge aus größeren Programmen und müssen im Kontext ausgeführt werden. Während Aktionen Ihnen zeigen, wie Sie einzelne Service-Funktionen aufrufen, können Sie Aktionen im Kontext der zugehörigen Szenarios anzeigen.

Jedes Beispiel enthält einen Link zum vollständigen Quellcode, in dem Sie Anweisungen zur Einrichtung und Ausführung des Codes im Kontext finden.

Themen

Aktionen

Das folgende Codebeispiel zeigt die VerwendungGetPersonalizedRanking.

SDK für Java 2.x
Anmerkung

Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

public static List<PredictedItem> getRankedRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId, ArrayList<String> items) { try { GetPersonalizedRankingRequest rankingRecommendationsRequest = GetPersonalizedRankingRequest.builder() .campaignArn(campaignArn) .userId(userId) .inputList(items) .build(); GetPersonalizedRankingResponse recommendationsResponse = personalizeRuntimeClient .getPersonalizedRanking(rankingRecommendationsRequest); List<PredictedItem> rankedItems = recommendationsResponse.personalizedRanking(); int rank = 1; for (PredictedItem item : rankedItems) { System.out.println("Item ranked at position " + rank + " details"); System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); System.out.println("---------------------------------------------"); rank++; } return rankedItems; } catch (PersonalizeRuntimeException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } return null; }

Das folgende Codebeispiel zeigt die VerwendungGetPersonalizedRanking.

SDK für Java 2.x
Anmerkung

Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

public static List<PredictedItem> getRankedRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId, ArrayList<String> items) { try { GetPersonalizedRankingRequest rankingRecommendationsRequest = GetPersonalizedRankingRequest.builder() .campaignArn(campaignArn) .userId(userId) .inputList(items) .build(); GetPersonalizedRankingResponse recommendationsResponse = personalizeRuntimeClient .getPersonalizedRanking(rankingRecommendationsRequest); List<PredictedItem> rankedItems = recommendationsResponse.personalizedRanking(); int rank = 1; for (PredictedItem item : rankedItems) { System.out.println("Item ranked at position " + rank + " details"); System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); System.out.println("---------------------------------------------"); rank++; } return rankedItems; } catch (PersonalizeRuntimeException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } return null; }

Das folgende Codebeispiel zeigt die VerwendungGetRecommendations.

SDK für Java 2.x
Anmerkung

Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

Holen Sie sich eine Liste der empfohlenen Artikel.

public static void getRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId) { try { GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .campaignArn(campaignArn) .numResults(20) .userId(userId) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (AwsServiceException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }

Rufen Sie eine Liste mit empfohlenen Artikeln von einem Empfehlungsgeber ab, der in einer Domain-Datensatzgruppe erstellt wurde.

public static void getRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String recommenderArn, String userId) { try { GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .recommenderArn(recommenderArn) .numResults(20) .userId(userId) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (AwsServiceException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }

Verwenden Sie einen Filter, wenn Sie Empfehlungen anfordern.

public static void getFilteredRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId, String filterArn, String parameter1Name, String parameter1Value1, String parameter1Value2, String parameter2Name, String parameter2Value) { try { Map<String, String> filterValues = new HashMap<>(); filterValues.put(parameter1Name, String.format("\"%1$s\",\"%2$s\"", parameter1Value1, parameter1Value2)); filterValues.put(parameter2Name, String.format("\"%1$s\"", parameter2Value)); GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .campaignArn(campaignArn) .numResults(20) .userId(userId) .filterArn(filterArn) .filterValues(filterValues) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (PersonalizeRuntimeException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }
  • Einzelheiten zur API finden Sie GetRecommendationsin der AWS SDK for Java 2.x API-Referenz.

Das folgende Codebeispiel zeigt die VerwendungGetRecommendations.

SDK für Java 2.x
Anmerkung

Es gibt noch mehr dazu GitHub. Sie sehen das vollständige Beispiel und erfahren, wie Sie das AWS -Code-Beispiel-Repository einrichten und ausführen.

Holen Sie sich eine Liste der empfohlenen Artikel.

public static void getRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId) { try { GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .campaignArn(campaignArn) .numResults(20) .userId(userId) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (AwsServiceException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }

Rufen Sie eine Liste mit empfohlenen Artikeln von einem Empfehlungsgeber ab, der in einer Domain-Datensatzgruppe erstellt wurde.

public static void getRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String recommenderArn, String userId) { try { GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .recommenderArn(recommenderArn) .numResults(20) .userId(userId) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (AwsServiceException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }

Verwenden Sie einen Filter, wenn Sie Empfehlungen anfordern.

public static void getFilteredRecs(PersonalizeRuntimeClient personalizeRuntimeClient, String campaignArn, String userId, String filterArn, String parameter1Name, String parameter1Value1, String parameter1Value2, String parameter2Name, String parameter2Value) { try { Map<String, String> filterValues = new HashMap<>(); filterValues.put(parameter1Name, String.format("\"%1$s\",\"%2$s\"", parameter1Value1, parameter1Value2)); filterValues.put(parameter2Name, String.format("\"%1$s\"", parameter2Value)); GetRecommendationsRequest recommendationsRequest = GetRecommendationsRequest.builder() .campaignArn(campaignArn) .numResults(20) .userId(userId) .filterArn(filterArn) .filterValues(filterValues) .build(); GetRecommendationsResponse recommendationsResponse = personalizeRuntimeClient .getRecommendations(recommendationsRequest); List<PredictedItem> items = recommendationsResponse.itemList(); for (PredictedItem item : items) { System.out.println("Item Id is : " + item.itemId()); System.out.println("Item score is : " + item.score()); } } catch (PersonalizeRuntimeException e) { System.err.println(e.awsErrorDetails().errorMessage()); System.exit(1); } }
  • Einzelheiten zur API finden Sie GetRecommendationsin der AWS SDK for Java 2.x API-Referenz.

DatenschutzNutzungsbedingungen für die WebsiteCookie-Einstellungen
© 2025, Amazon Web Services, Inc. oder Tochtergesellschaften. Alle Rechte vorbehalten.