Pilih preferensi cookie Anda

Kami menggunakan cookie penting serta alat serupa yang diperlukan untuk menyediakan situs dan layanan. Kami menggunakan cookie performa untuk mengumpulkan statistik anonim sehingga kami dapat memahami cara pelanggan menggunakan situs dan melakukan perbaikan. Cookie penting tidak dapat dinonaktifkan, tetapi Anda dapat mengklik “Kustom” atau “Tolak” untuk menolak cookie performa.

Jika Anda setuju, AWS dan pihak ketiga yang disetujui juga akan menggunakan cookie untuk menyediakan fitur situs yang berguna, mengingat preferensi Anda, dan menampilkan konten yang relevan, termasuk iklan yang relevan. Untuk menerima atau menolak semua cookie yang tidak penting, klik “Terima” atau “Tolak”. Untuk membuat pilihan yang lebih detail, klik “Kustomisasi”.

AutoMLJobObjective - Amazon SageMaker
Halaman ini belum diterjemahkan ke dalam bahasa Anda. Minta terjemahan

AutoMLJobObjective

Specifies a metric to minimize or maximize as the objective of an AutoML job.

Contents

MetricName

The name of the objective metric used to measure the predictive quality of a machine learning system. During training, the model's parameters are updated iteratively to optimize its performance based on the feedback provided by the objective metric when evaluating the model on the validation dataset.

The list of available metrics supported by Autopilot and the default metric applied when you do not specify a metric name explicitly depend on the problem type.

  • For tabular problem types:

    • List of available metrics:

      • Regression: MAE, MSE, R2, RMSE

      • Binary classification: Accuracy, AUC, BalancedAccuracy, F1, Precision, Recall

      • Multiclass classification: Accuracy, BalancedAccuracy, F1macro, PrecisionMacro, RecallMacro

      For a description of each metric, see Autopilot metrics for classification and regression.

    • Default objective metrics:

      • Regression: MSE.

      • Binary classification: F1.

      • Multiclass classification: Accuracy.

  • For image or text classification problem types:

  • For time-series forecasting problem types:

  • For text generation problem types (LLMs fine-tuning): Fine-tuning language models in Autopilot does not require setting the AutoMLJobObjective field. Autopilot fine-tunes LLMs without requiring multiple candidates to be trained and evaluated. Instead, using your dataset, Autopilot directly fine-tunes your target model to enhance a default objective metric, the cross-entropy loss. After fine-tuning a language model, you can evaluate the quality of its generated text using different metrics. For a list of the available metrics, see Metrics for fine-tuning LLMs in Autopilot.

Type: String

Valid Values: Accuracy | MSE | F1 | F1macro | AUC | RMSE | BalancedAccuracy | R2 | Recall | RecallMacro | Precision | PrecisionMacro | MAE | MAPE | MASE | WAPE | AverageWeightedQuantileLoss

Required: Yes

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

PrivasiSyarat situsPreferensi cookie
© 2025, Amazon Web Services, Inc. atau afiliasinya. Semua hak dilindungi undang-undang.