選取您的 Cookie 偏好設定

我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。

如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。

GenerateDataKeyPair - AWS Key Management Service
此頁面尚未翻譯為您的語言。 請求翻譯

GenerateDataKeyPair

Returns a unique asymmetric data key pair for use outside of AWS KMS. This operation returns a plaintext public key, a plaintext private key, and a copy of the private key that is encrypted under the symmetric encryption KMS key you specify. You can use the data key pair to perform asymmetric cryptography and implement digital signatures outside of AWS KMS. The bytes in the keys are random; they are not related to the caller or to the KMS key that is used to encrypt the private key.

You can use the public key that GenerateDataKeyPair returns to encrypt data or verify a signature outside of AWS KMS. Then, store the encrypted private key with the data. When you are ready to decrypt data or sign a message, you can use the Decrypt operation to decrypt the encrypted private key.

To generate a data key pair, you must specify a symmetric encryption KMS key to encrypt the private key in a data key pair. You cannot use an asymmetric KMS key or a KMS key in a custom key store. To get the type and origin of your KMS key, use the DescribeKey operation.

Use the KeyPairSpec parameter to choose an RSA or Elliptic Curve (ECC) data key pair. In China Regions, you can also choose an SM2 data key pair. AWS KMS recommends that you use ECC key pairs for signing, and use RSA and SM2 key pairs for either encryption or signing, but not both. However, AWS KMS cannot enforce any restrictions on the use of data key pairs outside of AWS KMS.

If you are using the data key pair to encrypt data, or for any operation where you don't immediately need a private key, consider using the GenerateDataKeyPairWithoutPlaintext operation. GenerateDataKeyPairWithoutPlaintext returns a plaintext public key and an encrypted private key, but omits the plaintext private key that you need only to decrypt ciphertext or sign a message. Later, when you need to decrypt the data or sign a message, use the Decrypt operation to decrypt the encrypted private key in the data key pair.

GenerateDataKeyPair returns a unique data key pair for each request. The bytes in the keys are random; they are not related to the caller or the KMS key that is used to encrypt the private key. The public key is a DER-encoded X.509 SubjectPublicKeyInfo, as specified in RFC 5280. The private key is a DER-encoded PKCS8 PrivateKeyInfo, as specified in RFC 5958.

GenerateDataKeyPair also supports AWS Nitro Enclaves, which provide an isolated compute environment in Amazon EC2. To call GenerateDataKeyPair for an AWS Nitro enclave, use the AWS Nitro Enclaves SDK or any AWS SDK. Use the Recipient parameter to provide the attestation document for the enclave. GenerateDataKeyPair returns the public data key and a copy of the private data key encrypted under the specified KMS key, as usual. But instead of a plaintext copy of the private data key (PrivateKeyPlaintext), the response includes a copy of the private data key encrypted under the public key from the attestation document (CiphertextForRecipient). For information about the interaction between AWS KMS and AWS Nitro Enclaves, see How AWS Nitro Enclaves uses AWS KMS in the AWS Key Management Service Developer Guide..

You can use an optional encryption context to add additional security to the encryption operation. If you specify an EncryptionContext, you must specify the same encryption context (a case-sensitive exact match) when decrypting the encrypted data key. Otherwise, the request to decrypt fails with an InvalidCiphertextException. For more information, see Encryption Context in the AWS Key Management Service Developer Guide.

The KMS key that you use for this operation must be in a compatible key state. For details, see Key states of AWS KMS keys in the AWS Key Management Service Developer Guide.

Cross-account use: Yes. To perform this operation with a KMS key in a different AWS account, specify the key ARN or alias ARN in the value of the KeyId parameter.

Required permissions: kms:GenerateDataKeyPair (key policy)

Related operations:

Eventual consistency: The AWS KMS API follows an eventual consistency model. For more information, see AWS KMS eventual consistency.

Request Syntax

{ "DryRun": boolean, "EncryptionContext": { "string" : "string" }, "GrantTokens": [ "string" ], "KeyId": "string", "KeyPairSpec": "string", "Recipient": { "AttestationDocument": blob, "KeyEncryptionAlgorithm": "string" } }

Request Parameters

For information about the parameters that are common to all actions, see Common Parameters.

The request accepts the following data in JSON format.

Note

In the following list, the required parameters are described first.

KeyId

Specifies the symmetric encryption KMS key that encrypts the private key in the data key pair. You cannot specify an asymmetric KMS key or a KMS key in a custom key store. To get the type and origin of your KMS key, use the DescribeKey operation.

To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different AWS account, you must use the key ARN or alias ARN.

For example:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

Required: Yes

KeyPairSpec

Determines the type of data key pair that is generated.

The AWS KMS rule that restricts the use of asymmetric RSA and SM2 KMS keys to encrypt and decrypt or to sign and verify (but not both), and the rule that permits you to use ECC KMS keys only to sign and verify, are not effective on data key pairs, which are used outside of AWS KMS. The SM2 key spec is only available in China Regions.

Type: String

Valid Values: RSA_2048 | RSA_3072 | RSA_4096 | ECC_NIST_P256 | ECC_NIST_P384 | ECC_NIST_P521 | ECC_SECG_P256K1 | SM2

Required: Yes

DryRun

Checks if your request will succeed. DryRun is an optional parameter.

To learn more about how to use this parameter, see Testing your permissions in the AWS Key Management Service Developer Guide.

Type: Boolean

Required: No

EncryptionContext

Specifies the encryption context that will be used when encrypting the private key in the data key pair.

Important

Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.

An encryption context is a collection of non-secret key-value pairs that represent additional authenticated data. When you use an encryption context to encrypt data, you must specify the same (an exact case-sensitive match) encryption context to decrypt the data. An encryption context is supported only on operations with symmetric encryption KMS keys. On operations with symmetric encryption KMS keys, an encryption context is optional, but it is strongly recommended.

For more information, see Encryption context in the AWS Key Management Service Developer Guide.

Type: String to string map

Required: No

GrantTokens

A list of grant tokens.

Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the AWS Key Management Service Developer Guide.

Type: Array of strings

Array Members: Minimum number of 0 items. Maximum number of 10 items.

Length Constraints: Minimum length of 1. Maximum length of 8192.

Required: No

Recipient

A signed attestation document from an AWS Nitro enclave and the encryption algorithm to use with the enclave's public key. The only valid encryption algorithm is RSAES_OAEP_SHA_256.

This parameter only supports attestation documents for AWS Nitro Enclaves. To call DeriveSharedSecret for an AWS Nitro Enclaves, use the AWS Nitro Enclaves SDK to generate the attestation document and then use the Recipient parameter from any AWS SDK to provide the attestation document for the enclave.

When you use this parameter, instead of returning a plaintext copy of the private data key, AWS KMS encrypts the plaintext private data key under the public key in the attestation document, and returns the resulting ciphertext in the CiphertextForRecipient field in the response. This ciphertext can be decrypted only with the private key in the enclave. The CiphertextBlob field in the response contains a copy of the private data key encrypted under the KMS key specified by the KeyId parameter. The PrivateKeyPlaintext field in the response is null or empty.

For information about the interaction between AWS KMS and AWS Nitro Enclaves, see How AWS Nitro Enclaves uses AWS KMS in the AWS Key Management Service Developer Guide.

Type: RecipientInfo object

Required: No

Response Syntax

{ "CiphertextForRecipient": blob, "KeyId": "string", "KeyPairSpec": "string", "PrivateKeyCiphertextBlob": blob, "PrivateKeyPlaintext": blob, "PublicKey": blob }

Response Elements

If the action is successful, the service sends back an HTTP 200 response.

The following data is returned in JSON format by the service.

CiphertextForRecipient

The plaintext private data key encrypted with the public key from the Nitro enclave. This ciphertext can be decrypted only by using a private key in the Nitro enclave.

This field is included in the response only when the Recipient parameter in the request includes a valid attestation document from an AWS Nitro enclave. For information about the interaction between AWS KMS and AWS Nitro Enclaves, see How AWS Nitro Enclaves uses AWS KMS in the AWS Key Management Service Developer Guide.

Type: Base64-encoded binary data object

Length Constraints: Minimum length of 1. Maximum length of 6144.

KeyId

The Amazon Resource Name (key ARN) of the KMS key that encrypted the private key.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 2048.

KeyPairSpec

The type of data key pair that was generated.

Type: String

Valid Values: RSA_2048 | RSA_3072 | RSA_4096 | ECC_NIST_P256 | ECC_NIST_P384 | ECC_NIST_P521 | ECC_SECG_P256K1 | SM2

PrivateKeyCiphertextBlob

The encrypted copy of the private key. When you use the HTTP API or the AWS CLI, the value is Base64-encoded. Otherwise, it is not Base64-encoded.

Type: Base64-encoded binary data object

Length Constraints: Minimum length of 1. Maximum length of 6144.

PrivateKeyPlaintext

The plaintext copy of the private key. When you use the HTTP API or the AWS CLI, the value is Base64-encoded. Otherwise, it is not Base64-encoded.

If the response includes the CiphertextForRecipient field, the PrivateKeyPlaintext field is null or empty.

Type: Base64-encoded binary data object

Length Constraints: Minimum length of 1. Maximum length of 4096.

PublicKey

The public key (in plaintext). When you use the HTTP API or the AWS CLI, the value is Base64-encoded. Otherwise, it is not Base64-encoded.

Type: Base64-encoded binary data object

Length Constraints: Minimum length of 1. Maximum length of 8192.

Errors

For information about the errors that are common to all actions, see Common Errors.

DependencyTimeoutException

The system timed out while trying to fulfill the request. You can retry the request.

HTTP Status Code: 500

DisabledException

The request was rejected because the specified KMS key is not enabled.

HTTP Status Code: 400

DryRunOperationException

The request was rejected because the DryRun parameter was specified.

HTTP Status Code: 400

InvalidGrantTokenException

The request was rejected because the specified grant token is not valid.

HTTP Status Code: 400

InvalidKeyUsageException

The request was rejected for one of the following reasons:

  • The KeyUsage value of the KMS key is incompatible with the API operation.

  • The encryption algorithm or signing algorithm specified for the operation is incompatible with the type of key material in the KMS key (KeySpec).

For encrypting, decrypting, re-encrypting, and generating data keys, the KeyUsage must be ENCRYPT_DECRYPT. For signing and verifying messages, the KeyUsage must be SIGN_VERIFY. For generating and verifying message authentication codes (MACs), the KeyUsage must be GENERATE_VERIFY_MAC. For deriving key agreement secrets, the KeyUsage must be KEY_AGREEMENT. To find the KeyUsage of a KMS key, use the DescribeKey operation.

To find the encryption or signing algorithms supported for a particular KMS key, use the DescribeKey operation.

HTTP Status Code: 400

KeyUnavailableException

The request was rejected because the specified KMS key was not available. You can retry the request.

HTTP Status Code: 500

KMSInternalException

The request was rejected because an internal exception occurred. The request can be retried.

HTTP Status Code: 500

KMSInvalidStateException

The request was rejected because the state of the specified resource is not valid for this request.

This exceptions means one of the following:

  • The key state of the KMS key is not compatible with the operation.

    To find the key state, use the DescribeKey operation. For more information about which key states are compatible with each AWS KMS operation, see Key states of AWS KMS keys in the AWS Key Management Service Developer Guide .

  • For cryptographic operations on KMS keys in custom key stores, this exception represents a general failure with many possible causes. To identify the cause, see the error message that accompanies the exception.

HTTP Status Code: 400

NotFoundException

The request was rejected because the specified entity or resource could not be found.

HTTP Status Code: 400

UnsupportedOperationException

The request was rejected because a specified parameter is not supported or a specified resource is not valid for this operation.

HTTP Status Code: 400

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

隱私權網站條款Cookie 偏好設定
© 2025, Amazon Web Services, Inc.或其附屬公司。保留所有權利。