Cookie の設定を選択する

当社は、当社のサイトおよびサービスを提供するために必要な必須 Cookie および類似のツールを使用しています。当社は、パフォーマンス Cookie を使用して匿名の統計情報を収集することで、お客様が当社のサイトをどのように利用しているかを把握し、改善に役立てています。必須 Cookie は無効化できませんが、[カスタマイズ] または [拒否] をクリックしてパフォーマンス Cookie を拒否することはできます。

お客様が同意した場合、AWS および承認された第三者は、Cookie を使用して便利なサイト機能を提供したり、お客様の選択を記憶したり、関連する広告を含む関連コンテンツを表示したりします。すべての必須ではない Cookie を受け入れるか拒否するには、[受け入れる] または [拒否] をクリックしてください。より詳細な選択を行うには、[カスタマイズ] をクリックしてください。

FindMatchesParameters - AWS Glue
このページはお客様の言語に翻訳されていません。 翻訳のリクエスト

FindMatchesParameters

The parameters to configure the find matches transform.

Contents

AccuracyCostTradeoff

The value that is selected when tuning your transform for a balance between accuracy and cost. A value of 0.5 means that the system balances accuracy and cost concerns. A value of 1.0 means a bias purely for accuracy, which typically results in a higher cost, sometimes substantially higher. A value of 0.0 means a bias purely for cost, which results in a less accurate FindMatches transform, sometimes with unacceptable accuracy.

Accuracy measures how well the transform finds true positives and true negatives. Increasing accuracy requires more machine resources and cost. But it also results in increased recall.

Cost measures how many compute resources, and thus money, are consumed to run the transform.

Type: Double

Valid Range: Minimum value of 0.0. Maximum value of 1.0.

Required: No

EnforceProvidedLabels

The value to switch on or off to force the output to match the provided labels from users. If the value is True, the find matches transform forces the output to match the provided labels. The results override the normal conflation results. If the value is False, the find matches transform does not ensure all the labels provided are respected, and the results rely on the trained model.

Note that setting this value to true may increase the conflation execution time.

Type: Boolean

Required: No

PrecisionRecallTradeoff

The value selected when tuning your transform for a balance between precision and recall. A value of 0.5 means no preference; a value of 1.0 means a bias purely for precision, and a value of 0.0 means a bias for recall. Because this is a tradeoff, choosing values close to 1.0 means very low recall, and choosing values close to 0.0 results in very low precision.

The precision metric indicates how often your model is correct when it predicts a match.

The recall metric indicates that for an actual match, how often your model predicts the match.

Type: Double

Valid Range: Minimum value of 0.0. Maximum value of 1.0.

Required: No

PrimaryKeyColumnName

The name of a column that uniquely identifies rows in the source table. Used to help identify matching records.

Type: String

Length Constraints: Minimum length of 1. Maximum length of 1024.

Pattern: [\u0020-\uD7FF\uE000-\uFFFD\uD800\uDC00-\uDBFF\uDFFF\t]*

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

プライバシーサイト規約Cookie の設定
© 2025, Amazon Web Services, Inc. or its affiliates.All rights reserved.