使用 SDK for Java 2.x 的 Amazon Rekognition 示例
以下代码示例演示了如何将AWS SDK for Java 2.x 与 Amazon Rekognition 结合使用,以执行操作和实现常见场景。
操作是大型程序的代码摘录,必须在上下文中运行。您可以通过操作了解如何调用单个服务函数,还可以通过函数相关场景的上下文查看操作。
场景是向您演示如何通过在一个服务中调用多个函数或与其他 AWS 服务 结合来完成特定任务的代码示例。
每个示例都包含一个指向完整源代码的链接,您可以从中找到有关如何在上下文中设置和运行代码的说明。
操作
以下代码示例演示了如何使用 CompareFaces。
有关更多信息,请参阅比较图像中的人脸。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.*; import software.amazon.awssdk.core.SdkBytes; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * <p> * For more information, see the following documentation topic: * <p> * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class CompareFaces { public static void main(String[] args) { final String usage = """ Usage: <bucketName> <sourceKey> <targetKey> Where: bucketName - The name of the S3 bucket where the images are stored. sourceKey - The S3 key (file name) for the source image. targetKey - The S3 key (file name) for the target image. """; if (args.length != 3) { System.out.println(usage); System.exit(1); } String bucketName = args[0]; String sourceKey = args[1]; String targetKey = args[2]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); compareTwoFaces(rekClient, bucketName, sourceKey, targetKey); } /** * Compares two faces from images stored in an Amazon S3 bucket using AWS Rekognition. * * <p>This method takes two image keys from an S3 bucket and compares the faces within them. * It prints out the confidence level of matched faces and reports the number of unmatched faces.</p> * * @param rekClient The {@link RekognitionClient} used to call AWS Rekognition. * @param bucketName The name of the S3 bucket containing the images. * @param sourceKey The object key (file path) for the source image in the S3 bucket. * @param targetKey The object key (file path) for the target image in the S3 bucket. * @throws RuntimeException If the Rekognition service returns an error. */ public static void compareTwoFaces(RekognitionClient rekClient, String bucketName, String sourceKey, String targetKey) { try { Float similarityThreshold = 70F; S3Object s3ObjectSource = S3Object.builder() .bucket(bucketName) .name(sourceKey) .build(); Image sourceImage = Image.builder() .s3Object(s3ObjectSource) .build(); S3Object s3ObjectTarget = S3Object.builder() .bucket(bucketName) .name(targetKey) .build(); Image targetImage = Image.builder() .s3Object(s3ObjectTarget) .build(); CompareFacesRequest facesRequest = CompareFacesRequest.builder() .sourceImage(sourceImage) .targetImage(targetImage) .similarityThreshold(similarityThreshold) .build(); // Compare the two images. CompareFacesResponse compareFacesResult = rekClient.compareFaces(facesRequest); List<CompareFacesMatch> faceDetails = compareFacesResult.faceMatches(); for (CompareFacesMatch match : faceDetails) { ComparedFace face = match.face(); BoundingBox position = face.boundingBox(); System.out.println("Face at " + position.left().toString() + " " + position.top() + " matches with " + face.confidence().toString() + "% confidence."); } List<ComparedFace> unmatchedFaces = compareFacesResult.unmatchedFaces(); System.out.println("There were " + unmatchedFaces.size() + " face(s) that did not match."); } catch (RekognitionException e) { System.err.println("Error comparing faces: " + e.awsErrorDetails().errorMessage()); throw new RuntimeException(e); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 CompareFaces。
-
以下代码示例演示了如何使用 CreateCollection。
有关更多信息,请参阅创建集合。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.CreateCollectionResponse; import software.amazon.awssdk.services.rekognition.model.CreateCollectionRequest; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class CreateCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionName>\s Where: collectionName - The name of the collection.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Creating collection: " + collectionId); createMyCollection(rekClient, collectionId); rekClient.close(); } /** * Creates a new Amazon Rekognition collection. * * @param rekClient the Amazon Rekognition client used to interact with the Rekognition service * @param collectionId the unique identifier for the collection to be created */ public static void createMyCollection(RekognitionClient rekClient, String collectionId) { try { CreateCollectionRequest collectionRequest = CreateCollectionRequest.builder() .collectionId(collectionId) .build(); CreateCollectionResponse collectionResponse = rekClient.createCollection(collectionRequest); System.out.println("CollectionArn: " + collectionResponse.collectionArn()); System.out.println("Status code: " + collectionResponse.statusCode().toString()); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 CreateCollection。
-
以下代码示例演示了如何使用 DeleteCollection。
有关更多信息,请参阅删除集合。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DeleteCollectionRequest; import software.amazon.awssdk.services.rekognition.model.DeleteCollectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DeleteCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId>\s Where: collectionId - The id of the collection to delete.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Deleting collection: " + collectionId); deleteMyCollection(rekClient, collectionId); rekClient.close(); } /** * Deletes an Amazon Rekognition collection. * * @param rekClient An instance of the {@link RekognitionClient} class, which is used to interact with the Amazon Rekognition service. * @param collectionId The ID of the collection to be deleted. */ public static void deleteMyCollection(RekognitionClient rekClient, String collectionId) { try { DeleteCollectionRequest deleteCollectionRequest = DeleteCollectionRequest.builder() .collectionId(collectionId) .build(); DeleteCollectionResponse deleteCollectionResponse = rekClient.deleteCollection(deleteCollectionRequest); System.out.println(collectionId + ": " + deleteCollectionResponse.statusCode().toString()); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 DeleteCollection。
-
以下代码示例演示了如何使用 DeleteFaces。
有关更多信息,请参阅从集合中删除人脸。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DeleteFacesRequest; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DeleteFacesFromCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <faceId>\s Where: collectionId - The id of the collection from which faces are deleted.\s faceId - The id of the face to delete.\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String faceId = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Deleting collection: " + collectionId); deleteFacesCollection(rekClient, collectionId, faceId); rekClient.close(); } /** * Deletes a face from the specified Amazon Rekognition collection. * * @param rekClient an instance of the Amazon Rekognition client * @param collectionId the ID of the collection from which the face should be deleted * @param faceId the ID of the face to be deleted * @throws RekognitionException if an error occurs while deleting the face */ public static void deleteFacesCollection(RekognitionClient rekClient, String collectionId, String faceId) { try { DeleteFacesRequest deleteFacesRequest = DeleteFacesRequest.builder() .collectionId(collectionId) .faceIds(faceId) .build(); rekClient.deleteFaces(deleteFacesRequest); System.out.println("The face was deleted from the collection."); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 DeleteFaces。
-
以下代码示例演示了如何使用 DescribeCollection。
有关更多信息,请参阅描述集合。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DescribeCollectionRequest; import software.amazon.awssdk.services.rekognition.model.DescribeCollectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DescribeCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionName> Where: collectionName - The name of the Amazon Rekognition collection.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionName = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); describeColl(rekClient, collectionName); rekClient.close(); } /** * Describes an Amazon Rekognition collection. * * @param rekClient The Amazon Rekognition client used to make the request. * @param collectionName The name of the collection to describe. * * @throws RekognitionException If an error occurs while describing the collection. */ public static void describeColl(RekognitionClient rekClient, String collectionName) { try { DescribeCollectionRequest describeCollectionRequest = DescribeCollectionRequest.builder() .collectionId(collectionName) .build(); DescribeCollectionResponse describeCollectionResponse = rekClient .describeCollection(describeCollectionRequest); System.out.println("Collection Arn : " + describeCollectionResponse.collectionARN()); System.out.println("Created : " + describeCollectionResponse.creationTimestamp().toString()); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 DescribeCollection。
-
以下代码示例演示了如何使用 DetectFaces。
有关更多信息,请参阅检测图像中的人脸。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.*; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * <p> * For more information, see the following documentation topic: * <p> * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectFaces { public static void main(String[] args) { final String usage = """ Usage: <bucketName> <sourceImage> Where: bucketName = The name of the Amazon S3 bucket where the source image is stored. sourceImage - The name of the source image file in the Amazon S3 bucket. (for example, pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucketName = args[0]; String sourceImage = args[1]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectFacesinImage(rekClient, bucketName, sourceImage); rekClient.close(); } /** * Detects faces in an image stored in an Amazon S3 bucket using the Amazon Rekognition service. * * @param rekClient The Amazon Rekognition client used to interact with the Rekognition service. * @param bucketName The name of the Amazon S3 bucket where the source image is stored. * @param sourceImage The name of the source image file in the Amazon S3 bucket. */ public static void detectFacesinImage(RekognitionClient rekClient, String bucketName, String sourceImage) { try { S3Object s3ObjectTarget = S3Object.builder() .bucket(bucketName) .name(sourceImage) .build(); Image targetImage = Image.builder() .s3Object(s3ObjectTarget) .build(); DetectFacesRequest facesRequest = DetectFacesRequest.builder() .attributes(Attribute.ALL) .image(targetImage) .build(); DetectFacesResponse facesResponse = rekClient.detectFaces(facesRequest); List<FaceDetail> faceDetails = facesResponse.faceDetails(); for (FaceDetail face : faceDetails) { AgeRange ageRange = face.ageRange(); System.out.println("The detected face is estimated to be between " + ageRange.low().toString() + " and " + ageRange.high().toString() + " years old."); System.out.println("There is a smile : " + face.smile().value().toString()); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 DetectFaces。
-
以下代码示例演示了如何使用 DetectLabels。
有关更多信息,请参阅检测图像中的标签。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.*; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectLabels { public static void main(String[] args) { final String usage = """ Usage: <bucketName> <sourceImage> Where: bucketName - The name of the Amazon S3 bucket where the image is stored sourceImage - The name of the image file (for example, pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucketName = args[0] ; String sourceImage = args[1] ; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectImageLabels(rekClient, bucketName, sourceImage); rekClient.close(); } /** * Detects the labels in an image stored in an Amazon S3 bucket using the Amazon Rekognition service. * * @param rekClient the Amazon Rekognition client used to make the detection request * @param bucketName the name of the Amazon S3 bucket where the image is stored * @param sourceImage the name of the image file to be analyzed */ public static void detectImageLabels(RekognitionClient rekClient, String bucketName, String sourceImage) { try { S3Object s3ObjectTarget = S3Object.builder() .bucket(bucketName) .name(sourceImage) .build(); Image souImage = Image.builder() .s3Object(s3ObjectTarget) .build(); DetectLabelsRequest detectLabelsRequest = DetectLabelsRequest.builder() .image(souImage) .maxLabels(10) .build(); DetectLabelsResponse labelsResponse = rekClient.detectLabels(detectLabelsRequest); List<Label> labels = labelsResponse.labels(); System.out.println("Detected labels for the given photo"); for (Label label : labels) { System.out.println(label.name() + ": " + label.confidence().toString()); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 DetectLabels。
-
以下代码示例演示了如何使用 DetectModerationLabels。
有关更多信息,请参阅检测不适宜的图像。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.*; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectModerationLabels { public static void main(String[] args) { final String usage = """ Usage: <bucketName> <sourceImage> Where: bucketName - The name of the S3 bucket where the images are stored. sourceImage - The name of the image (for example, pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucketName = args[0]; String sourceImage = args[1]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectModLabels(rekClient, bucketName, sourceImage); rekClient.close(); } /** * Detects moderation labels in an image stored in an Amazon S3 bucket. * * @param rekClient the Amazon Rekognition client to use for the detection * @param bucketName the name of the Amazon S3 bucket where the image is stored * @param sourceImage the name of the image file to be analyzed * * @throws RekognitionException if there is an error during the image detection process */ public static void detectModLabels(RekognitionClient rekClient, String bucketName, String sourceImage) { try { S3Object s3ObjectTarget = S3Object.builder() .bucket(bucketName) .name(sourceImage) .build(); Image targetImage = Image.builder() .s3Object(s3ObjectTarget) .build(); DetectModerationLabelsRequest moderationLabelsRequest = DetectModerationLabelsRequest.builder() .image(targetImage) .minConfidence(60F) .build(); DetectModerationLabelsResponse moderationLabelsResponse = rekClient .detectModerationLabels(moderationLabelsRequest); List<ModerationLabel> labels = moderationLabelsResponse.moderationLabels(); System.out.println("Detected labels for image"); for (ModerationLabel label : labels) { System.out.println("Label: " + label.name() + "\n Confidence: " + label.confidence().toString() + "%" + "\n Parent:" + label.parentName()); } } catch (RekognitionException e) { e.printStackTrace(); System.exit(1); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 DetectModerationLabels。
-
以下代码示例演示了如何使用 DetectText。
有关更多信息,请参阅检测图像中的文本。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.*; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectText { public static void main(String[] args) { final String usage = "\n" + "Usage: <bucketName> <sourceImage>\n" + "\n" + "Where:\n" + " bucketName - The name of the S3 bucket where the image is stored\n" + " sourceImage - The path to the image that contains text (for example, pic1.png). \n"; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucketName = args[0]; String sourceImage = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectTextLabels(rekClient, bucketName, sourceImage); rekClient.close(); } /** * Detects text labels in an image stored in an S3 bucket using Amazon Rekognition. * * @param rekClient an instance of the Amazon Rekognition client * @param bucketName the name of the S3 bucket where the image is stored * @param sourceImage the name of the image file in the S3 bucket * @throws RekognitionException if an error occurs while calling the Amazon Rekognition API */ public static void detectTextLabels(RekognitionClient rekClient, String bucketName, String sourceImage) { try { S3Object s3ObjectTarget = S3Object.builder() .bucket(bucketName) .name(sourceImage) .build(); Image souImage = Image.builder() .s3Object(s3ObjectTarget) .build(); DetectTextRequest textRequest = DetectTextRequest.builder() .image(souImage) .build(); DetectTextResponse textResponse = rekClient.detectText(textRequest); List<TextDetection> textCollection = textResponse.textDetections(); System.out.println("Detected lines and words"); for (TextDetection text : textCollection) { System.out.println("Detected: " + text.detectedText()); System.out.println("Confidence: " + text.confidence().toString()); System.out.println("Id : " + text.id()); System.out.println("Parent Id: " + text.parentId()); System.out.println("Type: " + text.type()); System.out.println(); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 DetectText。
-
以下代码示例演示了如何使用 IndexFaces。
有关更多信息,请参阅将人脸添加到集合中。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.*; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class AddFacesToCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> <bucketName> Where: collectionName - The name of the collection. sourceImage - The name of the image (for example, pic1.png). bucketName - The name of the S3 bucket. """; if (args.length != 3) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String sourceImage = args[1]; String bucketName = args[2];; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); addToCollection(rekClient, collectionId, bucketName, sourceImage); rekClient.close(); } /** * Adds a face from an image to an Amazon Rekognition collection. * * @param rekClient the Amazon Rekognition client * @param collectionId the ID of the collection to add the face to * @param bucketName the name of the Amazon S3 bucket containing the image * @param sourceImage the name of the image file to add to the collection * @throws RekognitionException if there is an error while interacting with the Amazon Rekognition service */ public static void addToCollection(RekognitionClient rekClient, String collectionId, String bucketName, String sourceImage) { try { S3Object s3ObjectTarget = S3Object.builder() .bucket(bucketName) .name(sourceImage) .build(); Image targetImage = Image.builder() .s3Object(s3ObjectTarget) .build(); IndexFacesRequest facesRequest = IndexFacesRequest.builder() .collectionId(collectionId) .image(targetImage) .maxFaces(1) .qualityFilter(QualityFilter.AUTO) .detectionAttributes(Attribute.DEFAULT) .build(); IndexFacesResponse facesResponse = rekClient.indexFaces(facesRequest); System.out.println("Results for the image"); System.out.println("\n Faces indexed:"); List<FaceRecord> faceRecords = facesResponse.faceRecords(); for (FaceRecord faceRecord : faceRecords) { System.out.println(" Face ID: " + faceRecord.face().faceId()); System.out.println(" Location:" + faceRecord.faceDetail().boundingBox().toString()); } List<UnindexedFace> unindexedFaces = facesResponse.unindexedFaces(); System.out.println("Faces not indexed:"); for (UnindexedFace unindexedFace : unindexedFaces) { System.out.println(" Location:" + unindexedFace.faceDetail().boundingBox().toString()); System.out.println(" Reasons:"); for (Reason reason : unindexedFace.reasons()) { System.out.println("Reason: " + reason); } } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 的详细信息,请参阅请参阅《AWS SDK for Java 2.x API 参考》中的 IndexFaces。
-
以下代码示例演示了如何使用 ListCollections。
有关更多信息,请参阅列出集合。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.ListCollectionsRequest; import software.amazon.awssdk.services.rekognition.model.ListCollectionsResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class ListCollections { public static void main(String[] args) { Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Listing collections"); listAllCollections(rekClient); rekClient.close(); } public static void listAllCollections(RekognitionClient rekClient) { try { ListCollectionsRequest listCollectionsRequest = ListCollectionsRequest.builder() .maxResults(10) .build(); ListCollectionsResponse response = rekClient.listCollections(listCollectionsRequest); List<String> collectionIds = response.collectionIds(); for (String resultId : collectionIds) { System.out.println(resultId); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 ListCollections。
-
以下代码示例演示了如何使用 ListFaces。
有关更多信息,请参阅列出集合中的人脸。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.Face; import software.amazon.awssdk.services.rekognition.model.ListFacesRequest; import software.amazon.awssdk.services.rekognition.model.ListFacesResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class ListFacesInCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> Where: collectionId - The name of the collection.\s """; if (args.length < 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Faces in collection " + collectionId); listFacesCollection(rekClient, collectionId); rekClient.close(); } public static void listFacesCollection(RekognitionClient rekClient, String collectionId) { try { ListFacesRequest facesRequest = ListFacesRequest.builder() .collectionId(collectionId) .maxResults(10) .build(); ListFacesResponse facesResponse = rekClient.listFaces(facesRequest); List<Face> faces = facesResponse.faces(); for (Face face : faces) { System.out.println("Confidence level there is a face: " + face.confidence()); System.out.println("The face Id value is " + face.faceId()); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 ListFaces。
-
以下代码示例演示了如何使用 RecognizeCelebrities。
有关更多信息,请参阅识别图像中的名人。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.core.SdkBytes; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; import software.amazon.awssdk.services.rekognition.model.*; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class RecognizeCelebrities { public static void main(String[] args) { final String usage = """ Usage: <bucketName> <sourceImage> Where: bucketName - The name of the S3 bucket where the images are stored. sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String bucketName = args[0];; String sourceImage = args[1]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Locating celebrities in " + sourceImage); recognizeAllCelebrities(rekClient, bucketName, sourceImage); rekClient.close(); } /** * Recognizes all celebrities in an image stored in an Amazon S3 bucket. * * @param rekClient the Amazon Rekognition client used to perform the celebrity recognition operation * @param bucketName the name of the Amazon S3 bucket where the source image is stored * @param sourceImage the name of the source image file stored in the Amazon S3 bucket */ public static void recognizeAllCelebrities(RekognitionClient rekClient, String bucketName, String sourceImage) { try { S3Object s3ObjectTarget = S3Object.builder() .bucket(bucketName) .name(sourceImage) .build(); Image souImage = Image.builder() .s3Object(s3ObjectTarget) .build(); RecognizeCelebritiesRequest request = RecognizeCelebritiesRequest.builder() .image(souImage) .build(); RecognizeCelebritiesResponse result = rekClient.recognizeCelebrities(request); List<Celebrity> celebs = result.celebrityFaces(); System.out.println(celebs.size() + " celebrity(s) were recognized.\n"); for (Celebrity celebrity : celebs) { System.out.println("Celebrity recognized: " + celebrity.name()); System.out.println("Celebrity ID: " + celebrity.id()); System.out.println("Further information (if available):"); for (String url : celebrity.urls()) { System.out.println(url); } System.out.println(); } System.out.println(result.unrecognizedFaces().size() + " face(s) were unrecognized."); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 RecognizeCelebrities。
-
以下代码示例演示了如何使用 SearchFaces。
有关更多信息,请参阅搜索人脸(人脸 ID)。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.SearchFacesByImageRequest; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.SearchFacesByImageResponse; import software.amazon.awssdk.services.rekognition.model.FaceMatch; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class SearchFaceMatchingImageCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> Where: collectionId - The id of the collection. \s sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String sourceImage = args[1]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Searching for a face in a collections"); searchFaceInCollection(rekClient, collectionId, sourceImage); rekClient.close(); } public static void searchFaceInCollection(RekognitionClient rekClient, String collectionId, String sourceImage) { try { InputStream sourceStream = new FileInputStream(new File(sourceImage)); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); SearchFacesByImageRequest facesByImageRequest = SearchFacesByImageRequest.builder() .image(souImage) .maxFaces(10) .faceMatchThreshold(70F) .collectionId(collectionId) .build(); SearchFacesByImageResponse imageResponse = rekClient.searchFacesByImage(facesByImageRequest); System.out.println("Faces matching in the collection"); List<FaceMatch> faceImageMatches = imageResponse.faceMatches(); for (FaceMatch face : faceImageMatches) { System.out.println("The similarity level is " + face.similarity()); System.out.println(); } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 的详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 SearchFaces。
-
以下代码示例演示了如何使用 SearchFacesByImage。
有关更多信息,请参阅搜索人脸(图像)。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.SearchFacesRequest; import software.amazon.awssdk.services.rekognition.model.SearchFacesResponse; import software.amazon.awssdk.services.rekognition.model.FaceMatch; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class SearchFaceMatchingIdCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> Where: collectionId - The id of the collection. \s sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String faceId = args[1]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Searching for a face in a collections"); searchFacebyId(rekClient, collectionId, faceId); rekClient.close(); } public static void searchFacebyId(RekognitionClient rekClient, String collectionId, String faceId) { try { SearchFacesRequest searchFacesRequest = SearchFacesRequest.builder() .collectionId(collectionId) .faceId(faceId) .faceMatchThreshold(70F) .maxFaces(2) .build(); SearchFacesResponse imageResponse = rekClient.searchFaces(searchFacesRequest); System.out.println("Faces matching in the collection"); List<FaceMatch> faceImageMatches = imageResponse.faceMatches(); for (FaceMatch face : faceImageMatches) { System.out.println("The similarity level is " + face.similarity()); System.out.println(); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }-
有关 API 详细信息,请参阅《AWS SDK for Java 2.x API 参考》中的 SearchFacesByImage。
-
场景
以下代码示例演示如何创建无服务器应用程序,让用户能够使用标签管理照片。
以下代码示例展示如何构建采用 Amazon Rekognition 来检测图像中的个人防护设备(PPE)的应用程序。
- 适用于 Java 的 SDK 2.x
-
展示如何创建 AWS Lambda 函数来检测包含个人防护设备的图像。
有关完整的源代码以及如何设置和运行的说明,请参阅 GitHub
上的完整示例。 本示例中使用的服务
DynamoDB
Amazon Rekognition
Amazon S3
Amazon SES
以下代码示例展示了如何:
启动 Amazon Rekognition 任务,检测视频中的人物、对象和文本等元素。
查看任务状态,直到任务完成。
输出每个任务检测到的元素列表。
- 适用于 Java 的 SDK 2.x
-
注意
查看 GitHub,了解更多信息。在 AWS 代码示例存储库
中查找完整示例,了解如何进行设置和运行。 从位于 Amazon S3 存储桶中的视频获取名人结果。
import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartCelebrityRecognitionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.CelebrityRecognitionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.CelebrityRecognition; import software.amazon.awssdk.services.rekognition.model.CelebrityDetail; import software.amazon.awssdk.services.rekognition.model.StartCelebrityRecognitionRequest; import software.amazon.awssdk.services.rekognition.model.GetCelebrityRecognitionRequest; import software.amazon.awssdk.services.rekognition.model.GetCelebrityRecognitionResponse; import java.util.List; /** * To run this code example, ensure that you perform the Prerequisites as stated * in the Amazon Rekognition Guide: * https://docs.aws.amazon.com/rekognition/latest/dg/video-analyzing-with-sqs.html * * Also, ensure that set up your development environment, including your * credentials. * * For information, see this documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoCelebrityDetection { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startCelebrityDetection(rekClient, channel, bucket, video); getCelebrityDetectionResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startCelebrityDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartCelebrityRecognitionRequest recognitionRequest = StartCelebrityRecognitionRequest.builder() .jobTag("Celebrities") .notificationChannel(channel) .video(vidOb) .build(); StartCelebrityRecognitionResponse startCelebrityRecognitionResult = rekClient .startCelebrityRecognition(recognitionRequest); startJobId = startCelebrityRecognitionResult.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getCelebrityDetectionResults(RekognitionClient rekClient) { try { String paginationToken = null; GetCelebrityRecognitionResponse recognitionResponse = null; boolean finished = false; String status; int yy = 0; do { if (recognitionResponse != null) paginationToken = recognitionResponse.nextToken(); GetCelebrityRecognitionRequest recognitionRequest = GetCelebrityRecognitionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .sortBy(CelebrityRecognitionSortBy.TIMESTAMP) .maxResults(10) .build(); // Wait until the job succeeds while (!finished) { recognitionResponse = rekClient.getCelebrityRecognition(recognitionRequest); status = recognitionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = recognitionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<CelebrityRecognition> celebs = recognitionResponse.celebrities(); for (CelebrityRecognition celeb : celebs) { long seconds = celeb.timestamp() / 1000; System.out.print("Sec: " + seconds + " "); CelebrityDetail details = celeb.celebrity(); System.out.println("Name: " + details.name()); System.out.println("Id: " + details.id()); System.out.println(); } } while (recognitionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }通过标签检测操作检测视频中的标签。
import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.JsonMappingException; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.LabelDetectionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.LabelDetection; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.Instance; import software.amazon.awssdk.services.rekognition.model.Parent; import software.amazon.awssdk.services.sqs.SqsClient; import software.amazon.awssdk.services.sqs.model.Message; import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest; import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetect { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <queueUrl> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of the video (for example, people.mp4).\s queueUrl- The URL of a SQS queue.\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 5) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String queueUrl = args[2]; String topicArn = args[3]; String roleArn = args[4]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_EAST_1) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startLabels(rekClient, channel, bucket, video); getLabelJob(rekClient, sqs, queueUrl); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } public static void startLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartLabelDetectionRequest labelDetectionRequest = StartLabelDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .minConfidence(50F) .build(); StartLabelDetectionResponse labelDetectionResponse = rekClient.startLabelDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); boolean ans = true; String status = ""; int yy = 0; while (ans) { GetLabelDetectionRequest detectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .maxResults(10) .build(); GetLabelDetectionResponse result = rekClient.getLabelDetection(detectionRequest); status = result.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) ans = false; else System.out.println(yy + " status is: " + status); Thread.sleep(1000); yy++; } System.out.println(startJobId + " status is: " + status); } catch (RekognitionException | InterruptedException e) { e.getMessage(); System.exit(1); } } public static void getLabelJob(RekognitionClient rekClient, SqsClient sqs, String queueUrl) { List<Message> messages; ReceiveMessageRequest messageRequest = ReceiveMessageRequest.builder() .queueUrl(queueUrl) .build(); try { messages = sqs.receiveMessage(messageRequest).messages(); if (!messages.isEmpty()) { for (Message message : messages) { String notification = message.body(); // Get the status and job id from the notification ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found in JSON is " + operationJobId); DeleteMessageRequest deleteMessageRequest = DeleteMessageRequest.builder() .queueUrl(queueUrl) .build(); String jobId = operationJobId.textValue(); if (startJobId.compareTo(jobId) == 0) { System.out.println("Job id: " + operationJobId); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")) getResultsLabels(rekClient); else System.out.println("Video analysis failed"); sqs.deleteMessage(deleteMessageRequest); } else { System.out.println("Job received was not job " + startJobId); sqs.deleteMessage(deleteMessageRequest); } } } } catch (RekognitionException e) { e.getMessage(); System.exit(1); } catch (JsonMappingException e) { e.printStackTrace(); } catch (JsonProcessingException e) { e.printStackTrace(); } } // Gets the job results by calling GetLabelDetection private static void getResultsLabels(RekognitionClient rekClient) { int maxResults = 10; String paginationToken = null; GetLabelDetectionResponse labelDetectionResult = null; try { do { if (labelDetectionResult != null) paginationToken = labelDetectionResult.nextToken(); GetLabelDetectionRequest labelDetectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .sortBy(LabelDetectionSortBy.TIMESTAMP) .maxResults(maxResults) .nextToken(paginationToken) .build(); labelDetectionResult = rekClient.getLabelDetection(labelDetectionRequest); VideoMetadata videoMetaData = labelDetectionResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); List<LabelDetection> detectedLabels = labelDetectionResult.labels(); for (LabelDetection detectedLabel : detectedLabels) { long seconds = detectedLabel.timestamp(); Label label = detectedLabel.label(); System.out.println("Millisecond: " + seconds + " "); System.out.println(" Label:" + label.name()); System.out.println(" Confidence:" + detectedLabel.label().confidence().toString()); List<Instance> instances = label.instances(); System.out.println(" Instances of " + label.name()); if (instances.isEmpty()) { System.out.println(" " + "None"); } else { for (Instance instance : instances) { System.out.println(" Confidence: " + instance.confidence().toString()); System.out.println(" Bounding box: " + instance.boundingBox().toString()); } } System.out.println(" Parent labels for " + label.name() + ":"); List<Parent> parents = label.parents(); if (parents.isEmpty()) { System.out.println(" None"); } else { for (Parent parent : parents) { System.out.println(" " + parent.name()); } } System.out.println(); } } while (labelDetectionResult != null && labelDetectionResult.nextToken() != null); } catch (RekognitionException e) { e.getMessage(); System.exit(1); } } }检测存储在 Amazon S3 存储桶内的视频中的人脸
import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.JsonMappingException; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.LabelDetectionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.LabelDetection; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.Instance; import software.amazon.awssdk.services.rekognition.model.Parent; import software.amazon.awssdk.services.sqs.SqsClient; import software.amazon.awssdk.services.sqs.model.Message; import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest; import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetect { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <queueUrl> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of the video (for example, people.mp4).\s queueUrl- The URL of a SQS queue.\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 5) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String queueUrl = args[2]; String topicArn = args[3]; String roleArn = args[4]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_EAST_1) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startLabels(rekClient, channel, bucket, video); getLabelJob(rekClient, sqs, queueUrl); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } public static void startLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartLabelDetectionRequest labelDetectionRequest = StartLabelDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .minConfidence(50F) .build(); StartLabelDetectionResponse labelDetectionResponse = rekClient.startLabelDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); boolean ans = true; String status = ""; int yy = 0; while (ans) { GetLabelDetectionRequest detectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .maxResults(10) .build(); GetLabelDetectionResponse result = rekClient.getLabelDetection(detectionRequest); status = result.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) ans = false; else System.out.println(yy + " status is: " + status); Thread.sleep(1000); yy++; } System.out.println(startJobId + " status is: " + status); } catch (RekognitionException | InterruptedException e) { e.getMessage(); System.exit(1); } } public static void getLabelJob(RekognitionClient rekClient, SqsClient sqs, String queueUrl) { List<Message> messages; ReceiveMessageRequest messageRequest = ReceiveMessageRequest.builder() .queueUrl(queueUrl) .build(); try { messages = sqs.receiveMessage(messageRequest).messages(); if (!messages.isEmpty()) { for (Message message : messages) { String notification = message.body(); // Get the status and job id from the notification ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found in JSON is " + operationJobId); DeleteMessageRequest deleteMessageRequest = DeleteMessageRequest.builder() .queueUrl(queueUrl) .build(); String jobId = operationJobId.textValue(); if (startJobId.compareTo(jobId) == 0) { System.out.println("Job id: " + operationJobId); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")) getResultsLabels(rekClient); else System.out.println("Video analysis failed"); sqs.deleteMessage(deleteMessageRequest); } else { System.out.println("Job received was not job " + startJobId); sqs.deleteMessage(deleteMessageRequest); } } } } catch (RekognitionException e) { e.getMessage(); System.exit(1); } catch (JsonMappingException e) { e.printStackTrace(); } catch (JsonProcessingException e) { e.printStackTrace(); } } // Gets the job results by calling GetLabelDetection private static void getResultsLabels(RekognitionClient rekClient) { int maxResults = 10; String paginationToken = null; GetLabelDetectionResponse labelDetectionResult = null; try { do { if (labelDetectionResult != null) paginationToken = labelDetectionResult.nextToken(); GetLabelDetectionRequest labelDetectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .sortBy(LabelDetectionSortBy.TIMESTAMP) .maxResults(maxResults) .nextToken(paginationToken) .build(); labelDetectionResult = rekClient.getLabelDetection(labelDetectionRequest); VideoMetadata videoMetaData = labelDetectionResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); List<LabelDetection> detectedLabels = labelDetectionResult.labels(); for (LabelDetection detectedLabel : detectedLabels) { long seconds = detectedLabel.timestamp(); Label label = detectedLabel.label(); System.out.println("Millisecond: " + seconds + " "); System.out.println(" Label:" + label.name()); System.out.println(" Confidence:" + detectedLabel.label().confidence().toString()); List<Instance> instances = label.instances(); System.out.println(" Instances of " + label.name()); if (instances.isEmpty()) { System.out.println(" " + "None"); } else { for (Instance instance : instances) { System.out.println(" Confidence: " + instance.confidence().toString()); System.out.println(" Bounding box: " + instance.boundingBox().toString()); } } System.out.println(" Parent labels for " + label.name() + ":"); List<Parent> parents = label.parents(); if (parents.isEmpty()) { System.out.println(" None"); } else { for (Parent parent : parents) { System.out.println(" " + parent.name()); } } System.out.println(); } } while (labelDetectionResult != null && labelDetectionResult.nextToken() != null); } catch (RekognitionException e) { e.getMessage(); System.exit(1); } } }检测存储在 Amazon S3 存储桶内的视频中的不当或冒犯性内容。
import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartContentModerationRequest; import software.amazon.awssdk.services.rekognition.model.StartContentModerationResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetContentModerationResponse; import software.amazon.awssdk.services.rekognition.model.GetContentModerationRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.ContentModerationDetection; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectInappropriate { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startModerationDetection(rekClient, channel, bucket, video); getModResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startModerationDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartContentModerationRequest modDetectionRequest = StartContentModerationRequest.builder() .jobTag("Moderation") .notificationChannel(channel) .video(vidOb) .build(); StartContentModerationResponse startModDetectionResult = rekClient .startContentModeration(modDetectionRequest); startJobId = startModDetectionResult.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getModResults(RekognitionClient rekClient) { try { String paginationToken = null; GetContentModerationResponse modDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (modDetectionResponse != null) paginationToken = modDetectionResponse.nextToken(); GetContentModerationRequest modRequest = GetContentModerationRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { modDetectionResponse = rekClient.getContentModeration(modRequest); status = modDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = modDetectionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<ContentModerationDetection> mods = modDetectionResponse.moderationLabels(); for (ContentModerationDetection mod : mods) { long seconds = mod.timestamp() / 1000; System.out.print("Mod label: " + seconds + " "); System.out.println(mod.moderationLabel().toString()); System.out.println(); } } while (modDetectionResponse != null && modDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }检测存储在 Amazon S3 存储桶内的视频中的技术提示片段和镜头检测片段。
import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartShotDetectionFilter; import software.amazon.awssdk.services.rekognition.model.StartTechnicalCueDetectionFilter; import software.amazon.awssdk.services.rekognition.model.StartSegmentDetectionFilters; import software.amazon.awssdk.services.rekognition.model.StartSegmentDetectionRequest; import software.amazon.awssdk.services.rekognition.model.StartSegmentDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetSegmentDetectionResponse; import software.amazon.awssdk.services.rekognition.model.GetSegmentDetectionRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.SegmentDetection; import software.amazon.awssdk.services.rekognition.model.TechnicalCueSegment; import software.amazon.awssdk.services.rekognition.model.ShotSegment; import software.amazon.awssdk.services.rekognition.model.SegmentType; import software.amazon.awssdk.services.sqs.SqsClient; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectSegment { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_EAST_1) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startSegmentDetection(rekClient, channel, bucket, video); getSegmentResults(rekClient); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } public static void startSegmentDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartShotDetectionFilter cueDetectionFilter = StartShotDetectionFilter.builder() .minSegmentConfidence(60F) .build(); StartTechnicalCueDetectionFilter technicalCueDetectionFilter = StartTechnicalCueDetectionFilter.builder() .minSegmentConfidence(60F) .build(); StartSegmentDetectionFilters filters = StartSegmentDetectionFilters.builder() .shotFilter(cueDetectionFilter) .technicalCueFilter(technicalCueDetectionFilter) .build(); StartSegmentDetectionRequest segDetectionRequest = StartSegmentDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .segmentTypes(SegmentType.TECHNICAL_CUE, SegmentType.SHOT) .video(vidOb) .filters(filters) .build(); StartSegmentDetectionResponse segDetectionResponse = rekClient.startSegmentDetection(segDetectionRequest); startJobId = segDetectionResponse.jobId(); } catch (RekognitionException e) { e.getMessage(); System.exit(1); } } public static void getSegmentResults(RekognitionClient rekClient) { try { String paginationToken = null; GetSegmentDetectionResponse segDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (segDetectionResponse != null) paginationToken = segDetectionResponse.nextToken(); GetSegmentDetectionRequest recognitionRequest = GetSegmentDetectionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { segDetectionResponse = rekClient.getSegmentDetection(recognitionRequest); status = segDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. List<VideoMetadata> videoMetaData = segDetectionResponse.videoMetadata(); for (VideoMetadata metaData : videoMetaData) { System.out.println("Format: " + metaData.format()); System.out.println("Codec: " + metaData.codec()); System.out.println("Duration: " + metaData.durationMillis()); System.out.println("FrameRate: " + metaData.frameRate()); System.out.println("Job"); } List<SegmentDetection> detectedSegments = segDetectionResponse.segments(); for (SegmentDetection detectedSegment : detectedSegments) { String type = detectedSegment.type().toString(); if (type.contains(SegmentType.TECHNICAL_CUE.toString())) { System.out.println("Technical Cue"); TechnicalCueSegment segmentCue = detectedSegment.technicalCueSegment(); System.out.println("\tType: " + segmentCue.type()); System.out.println("\tConfidence: " + segmentCue.confidence().toString()); } if (type.contains(SegmentType.SHOT.toString())) { System.out.println("Shot"); ShotSegment segmentShot = detectedSegment.shotSegment(); System.out.println("\tIndex " + segmentShot.index()); System.out.println("\tConfidence: " + segmentShot.confidence().toString()); } long seconds = detectedSegment.durationMillis(); System.out.println("\tDuration : " + seconds + " milliseconds"); System.out.println("\tStart time code: " + detectedSegment.startTimecodeSMPTE()); System.out.println("\tEnd time code: " + detectedSegment.endTimecodeSMPTE()); System.out.println("\tDuration time code: " + detectedSegment.durationSMPTE()); System.out.println(); } } while (segDetectionResponse != null && segDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }检测存储在 Amazon S3 存储桶内的视频中的文本。
import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartTextDetectionRequest; import software.amazon.awssdk.services.rekognition.model.StartTextDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetTextDetectionResponse; import software.amazon.awssdk.services.rekognition.model.GetTextDetectionRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.TextDetectionResult; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectText { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startTextLabels(rekClient, channel, bucket, video); getTextResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startTextLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartTextDetectionRequest labelDetectionRequest = StartTextDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .build(); StartTextDetectionResponse labelDetectionResponse = rekClient.startTextDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getTextResults(RekognitionClient rekClient) { try { String paginationToken = null; GetTextDetectionResponse textDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (textDetectionResponse != null) paginationToken = textDetectionResponse.nextToken(); GetTextDetectionRequest recognitionRequest = GetTextDetectionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { textDetectionResponse = rekClient.getTextDetection(recognitionRequest); status = textDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = textDetectionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<TextDetectionResult> labels = textDetectionResponse.textDetections(); for (TextDetectionResult detectedText : labels) { System.out.println("Confidence: " + detectedText.textDetection().confidence().toString()); System.out.println("Id : " + detectedText.textDetection().id()); System.out.println("Parent Id: " + detectedText.textDetection().parentId()); System.out.println("Type: " + detectedText.textDetection().type()); System.out.println("Text: " + detectedText.textDetection().detectedText()); System.out.println(); } } while (textDetectionResponse != null && textDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }检测存储在 Amazon S3 存储桶内的视频中的人物。
import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.StartPersonTrackingRequest; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartPersonTrackingResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetPersonTrackingResponse; import software.amazon.awssdk.services.rekognition.model.GetPersonTrackingRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.PersonDetection; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoPersonDetection { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startPersonLabels(rekClient, channel, bucket, video); getPersonDetectionResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startPersonLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartPersonTrackingRequest personTrackingRequest = StartPersonTrackingRequest.builder() .jobTag("DetectingLabels") .video(vidOb) .notificationChannel(channel) .build(); StartPersonTrackingResponse labelDetectionResponse = rekClient.startPersonTracking(personTrackingRequest); startJobId = labelDetectionResponse.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getPersonDetectionResults(RekognitionClient rekClient) { try { String paginationToken = null; GetPersonTrackingResponse personTrackingResult = null; boolean finished = false; String status; int yy = 0; do { if (personTrackingResult != null) paginationToken = personTrackingResult.nextToken(); GetPersonTrackingRequest recognitionRequest = GetPersonTrackingRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds while (!finished) { personTrackingResult = rekClient.getPersonTracking(recognitionRequest); status = personTrackingResult.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = personTrackingResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<PersonDetection> detectedPersons = personTrackingResult.persons(); for (PersonDetection detectedPerson : detectedPersons) { long seconds = detectedPerson.timestamp() / 1000; System.out.print("Sec: " + seconds + " "); System.out.println("Person Identifier: " + detectedPerson.person().index()); System.out.println(); } } while (personTrackingResult != null && personTrackingResult.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }
以下代码示例演示如何构建采用 Amazon Rekognition 来按类别检测图像中物体的应用程序。
- 适用于 Java 的 SDK 2.x
-
展示如何使用 Amazon Rekognition Java API 创建应用程序,该应用程序采用 Amazon Rekognition 来按类别识别位于 Amazon Simple Storage Service (Amazon S3) 存储桶的图像当中的对象。该应用程序使用 Amazon Simple Email Service (Amazon SES) 向管理员发送包含结果的电子邮件通知。
有关完整的源代码以及如何设置和运行的说明,请参阅 GitHub
上的完整示例。 本示例中使用的服务
Amazon Rekognition
Amazon S3
Amazon SES
以下代码示例演示如何使用 Amazon Rekognition 检测视频中的人物和物体。
- 适用于 Java 的 SDK 2.x
-
展示如何使用 Amazon Rekognition Java API 创建应用程序,以检测位于 Amazon Simple Storage Service (Amazon S3) 存储桶的视频当中的人脸和对象。该应用程序使用 Amazon Simple Email Service (Amazon SES) 向管理员发送包含结果的电子邮件通知。
有关完整的源代码以及如何设置和运行的说明,请参阅 GitHub
上的完整示例。 本示例中使用的服务
Amazon Rekognition
Amazon S3
Amazon SES
Amazon SNS
Amazon SQS