使用适用于 Java 2.x 的亚马逊 Rekogn SDK ition 示例 - AWS SDK for Java 2.x

本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。

使用适用于 Java 2.x 的亚马逊 Rekogn SDK ition 示例

以下代码示例向您展示了如何使用 AWS SDK for Java 2.x 与 Amazon Rekognition 配合使用来执行操作和实现常见场景。

操作是大型程序的代码摘录,必须在上下文中运行。您可以通过操作了解如何调用单个服务函数,还可以通过函数相关场景的上下文查看操作。

场景是向您展示如何通过在一个服务中调用多个函数或与其他 AWS 服务结合来完成特定任务的代码示例。

每个示例都包含一个指向完整源代码的链接,您可以在其中找到有关如何在上下文中设置和运行代码的说明。

操作

以下代码示例显示了如何使用CompareFaces

有关更多信息,请参阅比较图像中的人脸

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.CompareFacesRequest; import software.amazon.awssdk.services.rekognition.model.CompareFacesResponse; import software.amazon.awssdk.services.rekognition.model.CompareFacesMatch; import software.amazon.awssdk.services.rekognition.model.ComparedFace; import software.amazon.awssdk.services.rekognition.model.BoundingBox; import software.amazon.awssdk.core.SdkBytes; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class CompareFaces { public static void main(String[] args) { final String usage = """ Usage: <pathSource> <pathTarget> Where: pathSource - The path to the source image (for example, C:\\AWS\\pic1.png).\s pathTarget - The path to the target image (for example, C:\\AWS\\pic2.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } Float similarityThreshold = 70F; String sourceImage = args[0]; String targetImage = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); compareTwoFaces(rekClient, similarityThreshold, sourceImage, targetImage); rekClient.close(); } public static void compareTwoFaces(RekognitionClient rekClient, Float similarityThreshold, String sourceImage, String targetImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); InputStream tarStream = new FileInputStream(targetImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); SdkBytes targetBytes = SdkBytes.fromInputStream(tarStream); // Create an Image object for the source image. Image souImage = Image.builder() .bytes(sourceBytes) .build(); Image tarImage = Image.builder() .bytes(targetBytes) .build(); CompareFacesRequest facesRequest = CompareFacesRequest.builder() .sourceImage(souImage) .targetImage(tarImage) .similarityThreshold(similarityThreshold) .build(); // Compare the two images. CompareFacesResponse compareFacesResult = rekClient.compareFaces(facesRequest); List<CompareFacesMatch> faceDetails = compareFacesResult.faceMatches(); for (CompareFacesMatch match : faceDetails) { ComparedFace face = match.face(); BoundingBox position = face.boundingBox(); System.out.println("Face at " + position.left().toString() + " " + position.top() + " matches with " + face.confidence().toString() + "% confidence."); } List<ComparedFace> uncompared = compareFacesResult.unmatchedFaces(); System.out.println("There was " + uncompared.size() + " face(s) that did not match"); System.out.println("Source image rotation: " + compareFacesResult.sourceImageOrientationCorrection()); System.out.println("target image rotation: " + compareFacesResult.targetImageOrientationCorrection()); } catch (RekognitionException | FileNotFoundException e) { System.out.println("Failed to load source image " + sourceImage); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 CompareFaces” 中的。

以下代码示例显示了如何使用CreateCollection

有关更多信息,请参阅创建集合

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.CreateCollectionResponse; import software.amazon.awssdk.services.rekognition.model.CreateCollectionRequest; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class CreateCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionName>\s Where: collectionName - The name of the collection.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Creating collection: " + collectionId); createMyCollection(rekClient, collectionId); rekClient.close(); } public static void createMyCollection(RekognitionClient rekClient, String collectionId) { try { CreateCollectionRequest collectionRequest = CreateCollectionRequest.builder() .collectionId(collectionId) .build(); CreateCollectionResponse collectionResponse = rekClient.createCollection(collectionRequest); System.out.println("CollectionArn: " + collectionResponse.collectionArn()); System.out.println("Status code: " + collectionResponse.statusCode().toString()); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 CreateCollection” 中的。

以下代码示例显示了如何使用DeleteCollection

有关更多信息,请参阅删除集合

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DeleteCollectionRequest; import software.amazon.awssdk.services.rekognition.model.DeleteCollectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DeleteCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId>\s Where: collectionId - The id of the collection to delete.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Deleting collection: " + collectionId); deleteMyCollection(rekClient, collectionId); rekClient.close(); } public static void deleteMyCollection(RekognitionClient rekClient, String collectionId) { try { DeleteCollectionRequest deleteCollectionRequest = DeleteCollectionRequest.builder() .collectionId(collectionId) .build(); DeleteCollectionResponse deleteCollectionResponse = rekClient.deleteCollection(deleteCollectionRequest); System.out.println(collectionId + ": " + deleteCollectionResponse.statusCode().toString()); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 DeleteCollection” 中的。

以下代码示例显示了如何使用DeleteFaces

有关更多信息,请参阅从集中删除人脸

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DeleteFacesRequest; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DeleteFacesFromCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <faceId>\s Where: collectionId - The id of the collection from which faces are deleted.\s faceId - The id of the face to delete.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String faceId = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Deleting collection: " + collectionId); deleteFacesCollection(rekClient, collectionId, faceId); rekClient.close(); } public static void deleteFacesCollection(RekognitionClient rekClient, String collectionId, String faceId) { try { DeleteFacesRequest deleteFacesRequest = DeleteFacesRequest.builder() .collectionId(collectionId) .faceIds(faceId) .build(); rekClient.deleteFaces(deleteFacesRequest); System.out.println("The face was deleted from the collection."); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 DeleteFaces” 中的。

以下代码示例显示了如何使用DescribeCollection

有关更多信息,请参阅描述集合

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DescribeCollectionRequest; import software.amazon.awssdk.services.rekognition.model.DescribeCollectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DescribeCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionName> Where: collectionName - The name of the Amazon Rekognition collection.\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String collectionName = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); describeColl(rekClient, collectionName); rekClient.close(); } public static void describeColl(RekognitionClient rekClient, String collectionName) { try { DescribeCollectionRequest describeCollectionRequest = DescribeCollectionRequest.builder() .collectionId(collectionName) .build(); DescribeCollectionResponse describeCollectionResponse = rekClient .describeCollection(describeCollectionRequest); System.out.println("Collection Arn : " + describeCollectionResponse.collectionARN()); System.out.println("Created : " + describeCollectionResponse.creationTimestamp().toString()); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 DescribeCollection” 中的。

以下代码示例显示了如何使用DetectFaces

有关更多信息,请参阅检测图像中的人脸

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.DetectFacesRequest; import software.amazon.awssdk.services.rekognition.model.DetectFacesResponse; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.Attribute; import software.amazon.awssdk.services.rekognition.model.FaceDetail; import software.amazon.awssdk.services.rekognition.model.AgeRange; import software.amazon.awssdk.core.SdkBytes; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectFaces { public static void main(String[] args) { final String usage = """ Usage: <sourceImage> Where: sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectFacesinImage(rekClient, sourceImage); rekClient.close(); } public static void detectFacesinImage(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); // Create an Image object for the source image. Image souImage = Image.builder() .bytes(sourceBytes) .build(); DetectFacesRequest facesRequest = DetectFacesRequest.builder() .attributes(Attribute.ALL) .image(souImage) .build(); DetectFacesResponse facesResponse = rekClient.detectFaces(facesRequest); List<FaceDetail> faceDetails = facesResponse.faceDetails(); for (FaceDetail face : faceDetails) { AgeRange ageRange = face.ageRange(); System.out.println("The detected face is estimated to be between " + ageRange.low().toString() + " and " + ageRange.high().toString() + " years old."); System.out.println("There is a smile : " + face.smile().value().toString()); } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 DetectFaces” 中的。

以下代码示例显示了如何使用DetectLabels

有关更多信息,请参阅检测图像中的标签

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.DetectLabelsRequest; import software.amazon.awssdk.services.rekognition.model.DetectLabelsResponse; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectLabels { public static void main(String[] args) { final String usage = """ Usage: <sourceImage> Where: sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectImageLabels(rekClient, sourceImage); rekClient.close(); } public static void detectImageLabels(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); // Create an Image object for the source image. Image souImage = Image.builder() .bytes(sourceBytes) .build(); DetectLabelsRequest detectLabelsRequest = DetectLabelsRequest.builder() .image(souImage) .maxLabels(10) .build(); DetectLabelsResponse labelsResponse = rekClient.detectLabels(detectLabelsRequest); List<Label> labels = labelsResponse.labels(); System.out.println("Detected labels for the given photo"); for (Label label : labels) { System.out.println(label.name() + ": " + label.confidence().toString()); } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 DetectLabels” 中的。

以下代码示例显示了如何使用DetectModerationLabels

有关更多信息,请参阅检测不适宜的图像

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.DetectModerationLabelsRequest; import software.amazon.awssdk.services.rekognition.model.DetectModerationLabelsResponse; import software.amazon.awssdk.services.rekognition.model.ModerationLabel; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectModerationLabels { public static void main(String[] args) { final String usage = """ Usage: <sourceImage> Where: sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length < 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectModLabels(rekClient, sourceImage); rekClient.close(); } public static void detectModLabels(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); DetectModerationLabelsRequest moderationLabelsRequest = DetectModerationLabelsRequest.builder() .image(souImage) .minConfidence(60F) .build(); DetectModerationLabelsResponse moderationLabelsResponse = rekClient .detectModerationLabels(moderationLabelsRequest); List<ModerationLabel> labels = moderationLabelsResponse.moderationLabels(); System.out.println("Detected labels for image"); for (ModerationLabel label : labels) { System.out.println("Label: " + label.name() + "\n Confidence: " + label.confidence().toString() + "%" + "\n Parent:" + label.parentName()); } } catch (RekognitionException | FileNotFoundException e) { e.printStackTrace(); System.exit(1); } } }

以下代码示例显示了如何使用DetectText

有关更多信息,请参阅检测图像中的文本

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.DetectTextRequest; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.DetectTextResponse; import software.amazon.awssdk.services.rekognition.model.TextDetection; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class DetectText { public static void main(String[] args) { final String usage = """ Usage: <sourceImage> Where: sourceImage - The path to the image that contains text (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); detectTextLabels(rekClient, sourceImage); rekClient.close(); } public static void detectTextLabels(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); DetectTextRequest textRequest = DetectTextRequest.builder() .image(souImage) .build(); DetectTextResponse textResponse = rekClient.detectText(textRequest); List<TextDetection> textCollection = textResponse.textDetections(); System.out.println("Detected lines and words"); for (TextDetection text : textCollection) { System.out.println("Detected: " + text.detectedText()); System.out.println("Confidence: " + text.confidence().toString()); System.out.println("Id : " + text.id()); System.out.println("Parent Id: " + text.parentId()); System.out.println("Type: " + text.type()); System.out.println(); } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 DetectText” 中的。

以下代码示例显示了如何使用IndexFaces

有关更多信息,请参阅将人脸添加到集合中

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.IndexFacesResponse; import software.amazon.awssdk.services.rekognition.model.IndexFacesRequest; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.QualityFilter; import software.amazon.awssdk.services.rekognition.model.Attribute; import software.amazon.awssdk.services.rekognition.model.FaceRecord; import software.amazon.awssdk.services.rekognition.model.UnindexedFace; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Reason; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class AddFacesToCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> Where: collectionName - The name of the collection. sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String sourceImage = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); addToCollection(rekClient, collectionId, sourceImage); rekClient.close(); } public static void addToCollection(RekognitionClient rekClient, String collectionId, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); IndexFacesRequest facesRequest = IndexFacesRequest.builder() .collectionId(collectionId) .image(souImage) .maxFaces(1) .qualityFilter(QualityFilter.AUTO) .detectionAttributes(Attribute.DEFAULT) .build(); IndexFacesResponse facesResponse = rekClient.indexFaces(facesRequest); System.out.println("Results for the image"); System.out.println("\n Faces indexed:"); List<FaceRecord> faceRecords = facesResponse.faceRecords(); for (FaceRecord faceRecord : faceRecords) { System.out.println(" Face ID: " + faceRecord.face().faceId()); System.out.println(" Location:" + faceRecord.faceDetail().boundingBox().toString()); } List<UnindexedFace> unindexedFaces = facesResponse.unindexedFaces(); System.out.println("Faces not indexed:"); for (UnindexedFace unindexedFace : unindexedFaces) { System.out.println(" Location:" + unindexedFace.faceDetail().boundingBox().toString()); System.out.println(" Reasons:"); for (Reason reason : unindexedFace.reasons()) { System.out.println("Reason: " + reason); } } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 IndexFaces” 中的。

以下代码示例显示了如何使用ListCollections

有关更多信息,请参阅列出集合

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.ListCollectionsRequest; import software.amazon.awssdk.services.rekognition.model.ListCollectionsResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class ListCollections { public static void main(String[] args) { Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Listing collections"); listAllCollections(rekClient); rekClient.close(); } public static void listAllCollections(RekognitionClient rekClient) { try { ListCollectionsRequest listCollectionsRequest = ListCollectionsRequest.builder() .maxResults(10) .build(); ListCollectionsResponse response = rekClient.listCollections(listCollectionsRequest); List<String> collectionIds = response.collectionIds(); for (String resultId : collectionIds) { System.out.println(resultId); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 ListCollections” 中的。

以下代码示例显示了如何使用ListFaces

有关更多信息,请参阅列出集合中的人脸

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.Face; import software.amazon.awssdk.services.rekognition.model.ListFacesRequest; import software.amazon.awssdk.services.rekognition.model.ListFacesResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class ListFacesInCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> Where: collectionId - The name of the collection.\s """; if (args.length < 1) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Faces in collection " + collectionId); listFacesCollection(rekClient, collectionId); rekClient.close(); } public static void listFacesCollection(RekognitionClient rekClient, String collectionId) { try { ListFacesRequest facesRequest = ListFacesRequest.builder() .collectionId(collectionId) .maxResults(10) .build(); ListFacesResponse facesResponse = rekClient.listFaces(facesRequest); List<Face> faces = facesResponse.faces(); for (Face face : faces) { System.out.println("Confidence level there is a face: " + face.confidence()); System.out.println("The face Id value is " + face.faceId()); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 ListFaces” 中的。

以下代码示例显示了如何使用RecognizeCelebrities

有关更多信息,请参阅识别图像中的名人

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.core.SdkBytes; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; import software.amazon.awssdk.services.rekognition.model.RecognizeCelebritiesRequest; import software.amazon.awssdk.services.rekognition.model.RecognizeCelebritiesResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.Celebrity; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class RecognizeCelebrities { public static void main(String[] args) { final String usage = """ Usage: <sourceImage> Where: sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Locating celebrities in " + sourceImage); recognizeAllCelebrities(rekClient, sourceImage); rekClient.close(); } public static void recognizeAllCelebrities(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); RecognizeCelebritiesRequest request = RecognizeCelebritiesRequest.builder() .image(souImage) .build(); RecognizeCelebritiesResponse result = rekClient.recognizeCelebrities(request); List<Celebrity> celebs = result.celebrityFaces(); System.out.println(celebs.size() + " celebrity(s) were recognized.\n"); for (Celebrity celebrity : celebs) { System.out.println("Celebrity recognized: " + celebrity.name()); System.out.println("Celebrity ID: " + celebrity.id()); System.out.println("Further information (if available):"); for (String url : celebrity.urls()) { System.out.println(url); } System.out.println(); } System.out.println(result.unrecognizedFaces().size() + " face(s) were unrecognized."); } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 RecognizeCelebrities” 中的。

以下代码示例显示了如何使用SearchFaces

有关更多信息,请参阅搜索人脸(面容 ID)

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.SearchFacesByImageRequest; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.SearchFacesByImageResponse; import software.amazon.awssdk.services.rekognition.model.FaceMatch; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class SearchFaceMatchingImageCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> Where: collectionId - The id of the collection. \s sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String sourceImage = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Searching for a face in a collections"); searchFaceInCollection(rekClient, collectionId, sourceImage); rekClient.close(); } public static void searchFaceInCollection(RekognitionClient rekClient, String collectionId, String sourceImage) { try { InputStream sourceStream = new FileInputStream(new File(sourceImage)); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); SearchFacesByImageRequest facesByImageRequest = SearchFacesByImageRequest.builder() .image(souImage) .maxFaces(10) .faceMatchThreshold(70F) .collectionId(collectionId) .build(); SearchFacesByImageResponse imageResponse = rekClient.searchFacesByImage(facesByImageRequest); System.out.println("Faces matching in the collection"); List<FaceMatch> faceImageMatches = imageResponse.faceMatches(); for (FaceMatch face : faceImageMatches) { System.out.println("The similarity level is " + face.similarity()); System.out.println(); } } catch (RekognitionException | FileNotFoundException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 SearchFaces” 中的。

以下代码示例显示了如何使用SearchFacesByImage

有关更多信息,请参阅搜索人脸(图像)

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.SearchFacesRequest; import software.amazon.awssdk.services.rekognition.model.SearchFacesResponse; import software.amazon.awssdk.services.rekognition.model.FaceMatch; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class SearchFaceMatchingIdCollection { public static void main(String[] args) { final String usage = """ Usage: <collectionId> <sourceImage> Where: collectionId - The id of the collection. \s sourceImage - The path to the image (for example, C:\\AWS\\pic1.png).\s """; if (args.length != 2) { System.out.println(usage); System.exit(1); } String collectionId = args[0]; String faceId = args[1]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); System.out.println("Searching for a face in a collections"); searchFacebyId(rekClient, collectionId, faceId); rekClient.close(); } public static void searchFacebyId(RekognitionClient rekClient, String collectionId, String faceId) { try { SearchFacesRequest searchFacesRequest = SearchFacesRequest.builder() .collectionId(collectionId) .faceId(faceId) .faceMatchThreshold(70F) .maxFaces(2) .build(); SearchFacesResponse imageResponse = rekClient.searchFaces(searchFacesRequest); System.out.println("Faces matching in the collection"); List<FaceMatch> faceImageMatches = imageResponse.faceMatches(); for (FaceMatch face : faceImageMatches) { System.out.println("The similarity level is " + face.similarity()); System.out.println(); } } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } }
  • 有关API详细信息,请参阅 “AWS SDK for Java 2.x API参考 SearchFacesByImage” 中的。

场景

以下代码示例演示如何创建无服务器应用程序,让用户能够使用标签管理照片。

SDK适用于 Java 2.x

演示如何开发照片资产管理应用程序,该应用程序使用 Amazon Rekognition 检测图像中的标签并将其存储以供日后检索。

有关如何设置和运行的完整源代码和说明,请参阅上的完整示例 GitHub

要深入了解这个例子的起源,请参阅 AWS 社区上的博文。

本示例中使用的服务
  • API网关

  • DynamoDB

  • Lambda

  • Amazon Rekognition

  • Amazon S3

  • Amazon SNS

以下代码示例演示如何构建一款使用 Amazon Rekognition 来检测图像中的个人防护装PPE备 () 的应用程序。

SDK适用于 Java 2.x

演示如何创建使用个人防护设备检测图像的 AWS Lambda 功能。

有关如何设置和运行的完整源代码和说明,请参阅上的完整示例GitHub

本示例中使用的服务
  • DynamoDB

  • Amazon Rekognition

  • Amazon S3

  • Amazon SES

以下代码示例展示了如何:

  • 启动 Amazon Rekognition 任务,检测视频中的人物、对象和文本等元素。

  • 查看任务状态,直到任务完成。

  • 输出每个任务检测到的元素列表。

SDK适用于 Java 2.x
注意

还有更多相关信息 GitHub。查找完整示例,学习如何在 AWS 代码示例存储库中进行设置和运行。

从位于 Amazon S3 存储桶中的视频获取名人结果。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartCelebrityRecognitionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.CelebrityRecognitionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.CelebrityRecognition; import software.amazon.awssdk.services.rekognition.model.CelebrityDetail; import software.amazon.awssdk.services.rekognition.model.StartCelebrityRecognitionRequest; import software.amazon.awssdk.services.rekognition.model.GetCelebrityRecognitionRequest; import software.amazon.awssdk.services.rekognition.model.GetCelebrityRecognitionResponse; import java.util.List; /** * To run this code example, ensure that you perform the Prerequisites as stated * in the Amazon Rekognition Guide: * https://docs.aws.amazon.com/rekognition/latest/dg/video-analyzing-with-sqs.html * * Also, ensure that set up your development environment, including your * credentials. * * For information, see this documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoCelebrityDetection { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startCelebrityDetection(rekClient, channel, bucket, video); getCelebrityDetectionResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startCelebrityDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartCelebrityRecognitionRequest recognitionRequest = StartCelebrityRecognitionRequest.builder() .jobTag("Celebrities") .notificationChannel(channel) .video(vidOb) .build(); StartCelebrityRecognitionResponse startCelebrityRecognitionResult = rekClient .startCelebrityRecognition(recognitionRequest); startJobId = startCelebrityRecognitionResult.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getCelebrityDetectionResults(RekognitionClient rekClient) { try { String paginationToken = null; GetCelebrityRecognitionResponse recognitionResponse = null; boolean finished = false; String status; int yy = 0; do { if (recognitionResponse != null) paginationToken = recognitionResponse.nextToken(); GetCelebrityRecognitionRequest recognitionRequest = GetCelebrityRecognitionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .sortBy(CelebrityRecognitionSortBy.TIMESTAMP) .maxResults(10) .build(); // Wait until the job succeeds while (!finished) { recognitionResponse = rekClient.getCelebrityRecognition(recognitionRequest); status = recognitionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = recognitionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<CelebrityRecognition> celebs = recognitionResponse.celebrities(); for (CelebrityRecognition celeb : celebs) { long seconds = celeb.timestamp() / 1000; System.out.print("Sec: " + seconds + " "); CelebrityDetail details = celeb.celebrity(); System.out.println("Name: " + details.name()); System.out.println("Id: " + details.id()); System.out.println(); } } while (recognitionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }

通过标签检测操作检测视频中的标签。

import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.JsonMappingException; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.LabelDetectionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.LabelDetection; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.Instance; import software.amazon.awssdk.services.rekognition.model.Parent; import software.amazon.awssdk.services.sqs.SqsClient; import software.amazon.awssdk.services.sqs.model.Message; import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest; import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetect { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <queueUrl> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of the video (for example, people.mp4).\s queueUrl- The URL of a SQS queue.\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 5) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String queueUrl = args[2]; String topicArn = args[3]; String roleArn = args[4]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_EAST_1) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startLabels(rekClient, channel, bucket, video); getLabelJob(rekClient, sqs, queueUrl); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } public static void startLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartLabelDetectionRequest labelDetectionRequest = StartLabelDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .minConfidence(50F) .build(); StartLabelDetectionResponse labelDetectionResponse = rekClient.startLabelDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); boolean ans = true; String status = ""; int yy = 0; while (ans) { GetLabelDetectionRequest detectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .maxResults(10) .build(); GetLabelDetectionResponse result = rekClient.getLabelDetection(detectionRequest); status = result.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) ans = false; else System.out.println(yy + " status is: " + status); Thread.sleep(1000); yy++; } System.out.println(startJobId + " status is: " + status); } catch (RekognitionException | InterruptedException e) { e.getMessage(); System.exit(1); } } public static void getLabelJob(RekognitionClient rekClient, SqsClient sqs, String queueUrl) { List<Message> messages; ReceiveMessageRequest messageRequest = ReceiveMessageRequest.builder() .queueUrl(queueUrl) .build(); try { messages = sqs.receiveMessage(messageRequest).messages(); if (!messages.isEmpty()) { for (Message message : messages) { String notification = message.body(); // Get the status and job id from the notification ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found in JSON is " + operationJobId); DeleteMessageRequest deleteMessageRequest = DeleteMessageRequest.builder() .queueUrl(queueUrl) .build(); String jobId = operationJobId.textValue(); if (startJobId.compareTo(jobId) == 0) { System.out.println("Job id: " + operationJobId); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")) getResultsLabels(rekClient); else System.out.println("Video analysis failed"); sqs.deleteMessage(deleteMessageRequest); } else { System.out.println("Job received was not job " + startJobId); sqs.deleteMessage(deleteMessageRequest); } } } } catch (RekognitionException e) { e.getMessage(); System.exit(1); } catch (JsonMappingException e) { e.printStackTrace(); } catch (JsonProcessingException e) { e.printStackTrace(); } } // Gets the job results by calling GetLabelDetection private static void getResultsLabels(RekognitionClient rekClient) { int maxResults = 10; String paginationToken = null; GetLabelDetectionResponse labelDetectionResult = null; try { do { if (labelDetectionResult != null) paginationToken = labelDetectionResult.nextToken(); GetLabelDetectionRequest labelDetectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .sortBy(LabelDetectionSortBy.TIMESTAMP) .maxResults(maxResults) .nextToken(paginationToken) .build(); labelDetectionResult = rekClient.getLabelDetection(labelDetectionRequest); VideoMetadata videoMetaData = labelDetectionResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); List<LabelDetection> detectedLabels = labelDetectionResult.labels(); for (LabelDetection detectedLabel : detectedLabels) { long seconds = detectedLabel.timestamp(); Label label = detectedLabel.label(); System.out.println("Millisecond: " + seconds + " "); System.out.println(" Label:" + label.name()); System.out.println(" Confidence:" + detectedLabel.label().confidence().toString()); List<Instance> instances = label.instances(); System.out.println(" Instances of " + label.name()); if (instances.isEmpty()) { System.out.println(" " + "None"); } else { for (Instance instance : instances) { System.out.println(" Confidence: " + instance.confidence().toString()); System.out.println(" Bounding box: " + instance.boundingBox().toString()); } } System.out.println(" Parent labels for " + label.name() + ":"); List<Parent> parents = label.parents(); if (parents.isEmpty()) { System.out.println(" None"); } else { for (Parent parent : parents) { System.out.println(" " + parent.name()); } } System.out.println(); } } while (labelDetectionResult != null && labelDetectionResult.nextToken() != null); } catch (RekognitionException e) { e.getMessage(); System.exit(1); } } }

检测存储在 Amazon S3 存储桶内的视频中的人脸

import com.fasterxml.jackson.core.JsonProcessingException; import com.fasterxml.jackson.databind.JsonMappingException; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionRequest; import software.amazon.awssdk.services.rekognition.model.GetLabelDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.LabelDetectionSortBy; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.LabelDetection; import software.amazon.awssdk.services.rekognition.model.Label; import software.amazon.awssdk.services.rekognition.model.Instance; import software.amazon.awssdk.services.rekognition.model.Parent; import software.amazon.awssdk.services.sqs.SqsClient; import software.amazon.awssdk.services.sqs.model.Message; import software.amazon.awssdk.services.sqs.model.ReceiveMessageRequest; import software.amazon.awssdk.services.sqs.model.DeleteMessageRequest; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetect { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <queueUrl> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of the video (for example, people.mp4).\s queueUrl- The URL of a SQS queue.\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 5) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String queueUrl = args[2]; String topicArn = args[3]; String roleArn = args[4]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_EAST_1) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startLabels(rekClient, channel, bucket, video); getLabelJob(rekClient, sqs, queueUrl); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } public static void startLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartLabelDetectionRequest labelDetectionRequest = StartLabelDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .minConfidence(50F) .build(); StartLabelDetectionResponse labelDetectionResponse = rekClient.startLabelDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); boolean ans = true; String status = ""; int yy = 0; while (ans) { GetLabelDetectionRequest detectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .maxResults(10) .build(); GetLabelDetectionResponse result = rekClient.getLabelDetection(detectionRequest); status = result.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) ans = false; else System.out.println(yy + " status is: " + status); Thread.sleep(1000); yy++; } System.out.println(startJobId + " status is: " + status); } catch (RekognitionException | InterruptedException e) { e.getMessage(); System.exit(1); } } public static void getLabelJob(RekognitionClient rekClient, SqsClient sqs, String queueUrl) { List<Message> messages; ReceiveMessageRequest messageRequest = ReceiveMessageRequest.builder() .queueUrl(queueUrl) .build(); try { messages = sqs.receiveMessage(messageRequest).messages(); if (!messages.isEmpty()) { for (Message message : messages) { String notification = message.body(); // Get the status and job id from the notification ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found in JSON is " + operationJobId); DeleteMessageRequest deleteMessageRequest = DeleteMessageRequest.builder() .queueUrl(queueUrl) .build(); String jobId = operationJobId.textValue(); if (startJobId.compareTo(jobId) == 0) { System.out.println("Job id: " + operationJobId); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")) getResultsLabels(rekClient); else System.out.println("Video analysis failed"); sqs.deleteMessage(deleteMessageRequest); } else { System.out.println("Job received was not job " + startJobId); sqs.deleteMessage(deleteMessageRequest); } } } } catch (RekognitionException e) { e.getMessage(); System.exit(1); } catch (JsonMappingException e) { e.printStackTrace(); } catch (JsonProcessingException e) { e.printStackTrace(); } } // Gets the job results by calling GetLabelDetection private static void getResultsLabels(RekognitionClient rekClient) { int maxResults = 10; String paginationToken = null; GetLabelDetectionResponse labelDetectionResult = null; try { do { if (labelDetectionResult != null) paginationToken = labelDetectionResult.nextToken(); GetLabelDetectionRequest labelDetectionRequest = GetLabelDetectionRequest.builder() .jobId(startJobId) .sortBy(LabelDetectionSortBy.TIMESTAMP) .maxResults(maxResults) .nextToken(paginationToken) .build(); labelDetectionResult = rekClient.getLabelDetection(labelDetectionRequest); VideoMetadata videoMetaData = labelDetectionResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); List<LabelDetection> detectedLabels = labelDetectionResult.labels(); for (LabelDetection detectedLabel : detectedLabels) { long seconds = detectedLabel.timestamp(); Label label = detectedLabel.label(); System.out.println("Millisecond: " + seconds + " "); System.out.println(" Label:" + label.name()); System.out.println(" Confidence:" + detectedLabel.label().confidence().toString()); List<Instance> instances = label.instances(); System.out.println(" Instances of " + label.name()); if (instances.isEmpty()) { System.out.println(" " + "None"); } else { for (Instance instance : instances) { System.out.println(" Confidence: " + instance.confidence().toString()); System.out.println(" Bounding box: " + instance.boundingBox().toString()); } } System.out.println(" Parent labels for " + label.name() + ":"); List<Parent> parents = label.parents(); if (parents.isEmpty()) { System.out.println(" None"); } else { for (Parent parent : parents) { System.out.println(" " + parent.name()); } } System.out.println(); } } while (labelDetectionResult != null && labelDetectionResult.nextToken() != null); } catch (RekognitionException e) { e.getMessage(); System.exit(1); } } }

检测存储在 Amazon S3 存储桶内的视频中的不当或冒犯性内容。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartContentModerationRequest; import software.amazon.awssdk.services.rekognition.model.StartContentModerationResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetContentModerationResponse; import software.amazon.awssdk.services.rekognition.model.GetContentModerationRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.ContentModerationDetection; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectInappropriate { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startModerationDetection(rekClient, channel, bucket, video); getModResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startModerationDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartContentModerationRequest modDetectionRequest = StartContentModerationRequest.builder() .jobTag("Moderation") .notificationChannel(channel) .video(vidOb) .build(); StartContentModerationResponse startModDetectionResult = rekClient .startContentModeration(modDetectionRequest); startJobId = startModDetectionResult.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getModResults(RekognitionClient rekClient) { try { String paginationToken = null; GetContentModerationResponse modDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (modDetectionResponse != null) paginationToken = modDetectionResponse.nextToken(); GetContentModerationRequest modRequest = GetContentModerationRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { modDetectionResponse = rekClient.getContentModeration(modRequest); status = modDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = modDetectionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<ContentModerationDetection> mods = modDetectionResponse.moderationLabels(); for (ContentModerationDetection mod : mods) { long seconds = mod.timestamp() / 1000; System.out.print("Mod label: " + seconds + " "); System.out.println(mod.moderationLabel().toString()); System.out.println(); } } while (modDetectionResponse != null && modDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }

检测存储在 Amazon S3 存储桶内的视频中的技术提示片段和镜头检测片段。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartShotDetectionFilter; import software.amazon.awssdk.services.rekognition.model.StartTechnicalCueDetectionFilter; import software.amazon.awssdk.services.rekognition.model.StartSegmentDetectionFilters; import software.amazon.awssdk.services.rekognition.model.StartSegmentDetectionRequest; import software.amazon.awssdk.services.rekognition.model.StartSegmentDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetSegmentDetectionResponse; import software.amazon.awssdk.services.rekognition.model.GetSegmentDetectionRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.SegmentDetection; import software.amazon.awssdk.services.rekognition.model.TechnicalCueSegment; import software.amazon.awssdk.services.rekognition.model.ShotSegment; import software.amazon.awssdk.services.rekognition.model.SegmentType; import software.amazon.awssdk.services.sqs.SqsClient; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectSegment { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); SqsClient sqs = SqsClient.builder() .region(Region.US_EAST_1) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startSegmentDetection(rekClient, channel, bucket, video); getSegmentResults(rekClient); System.out.println("This example is done!"); sqs.close(); rekClient.close(); } public static void startSegmentDetection(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartShotDetectionFilter cueDetectionFilter = StartShotDetectionFilter.builder() .minSegmentConfidence(60F) .build(); StartTechnicalCueDetectionFilter technicalCueDetectionFilter = StartTechnicalCueDetectionFilter.builder() .minSegmentConfidence(60F) .build(); StartSegmentDetectionFilters filters = StartSegmentDetectionFilters.builder() .shotFilter(cueDetectionFilter) .technicalCueFilter(technicalCueDetectionFilter) .build(); StartSegmentDetectionRequest segDetectionRequest = StartSegmentDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .segmentTypes(SegmentType.TECHNICAL_CUE, SegmentType.SHOT) .video(vidOb) .filters(filters) .build(); StartSegmentDetectionResponse segDetectionResponse = rekClient.startSegmentDetection(segDetectionRequest); startJobId = segDetectionResponse.jobId(); } catch (RekognitionException e) { e.getMessage(); System.exit(1); } } public static void getSegmentResults(RekognitionClient rekClient) { try { String paginationToken = null; GetSegmentDetectionResponse segDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (segDetectionResponse != null) paginationToken = segDetectionResponse.nextToken(); GetSegmentDetectionRequest recognitionRequest = GetSegmentDetectionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { segDetectionResponse = rekClient.getSegmentDetection(recognitionRequest); status = segDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. List<VideoMetadata> videoMetaData = segDetectionResponse.videoMetadata(); for (VideoMetadata metaData : videoMetaData) { System.out.println("Format: " + metaData.format()); System.out.println("Codec: " + metaData.codec()); System.out.println("Duration: " + metaData.durationMillis()); System.out.println("FrameRate: " + metaData.frameRate()); System.out.println("Job"); } List<SegmentDetection> detectedSegments = segDetectionResponse.segments(); for (SegmentDetection detectedSegment : detectedSegments) { String type = detectedSegment.type().toString(); if (type.contains(SegmentType.TECHNICAL_CUE.toString())) { System.out.println("Technical Cue"); TechnicalCueSegment segmentCue = detectedSegment.technicalCueSegment(); System.out.println("\tType: " + segmentCue.type()); System.out.println("\tConfidence: " + segmentCue.confidence().toString()); } if (type.contains(SegmentType.SHOT.toString())) { System.out.println("Shot"); ShotSegment segmentShot = detectedSegment.shotSegment(); System.out.println("\tIndex " + segmentShot.index()); System.out.println("\tConfidence: " + segmentShot.confidence().toString()); } long seconds = detectedSegment.durationMillis(); System.out.println("\tDuration : " + seconds + " milliseconds"); System.out.println("\tStart time code: " + detectedSegment.startTimecodeSMPTE()); System.out.println("\tEnd time code: " + detectedSegment.endTimecodeSMPTE()); System.out.println("\tDuration time code: " + detectedSegment.durationSMPTE()); System.out.println(); } } while (segDetectionResponse != null && segDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }

检测存储在 Amazon S3 存储桶内的视频中的文本。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartTextDetectionRequest; import software.amazon.awssdk.services.rekognition.model.StartTextDetectionResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetTextDetectionResponse; import software.amazon.awssdk.services.rekognition.model.GetTextDetectionRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.TextDetectionResult; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoDetectText { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startTextLabels(rekClient, channel, bucket, video); getTextResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startTextLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartTextDetectionRequest labelDetectionRequest = StartTextDetectionRequest.builder() .jobTag("DetectingLabels") .notificationChannel(channel) .video(vidOb) .build(); StartTextDetectionResponse labelDetectionResponse = rekClient.startTextDetection(labelDetectionRequest); startJobId = labelDetectionResponse.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getTextResults(RekognitionClient rekClient) { try { String paginationToken = null; GetTextDetectionResponse textDetectionResponse = null; boolean finished = false; String status; int yy = 0; do { if (textDetectionResponse != null) paginationToken = textDetectionResponse.nextToken(); GetTextDetectionRequest recognitionRequest = GetTextDetectionRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds. while (!finished) { textDetectionResponse = rekClient.getTextDetection(recognitionRequest); status = textDetectionResponse.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = textDetectionResponse.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<TextDetectionResult> labels = textDetectionResponse.textDetections(); for (TextDetectionResult detectedText : labels) { System.out.println("Confidence: " + detectedText.textDetection().confidence().toString()); System.out.println("Id : " + detectedText.textDetection().id()); System.out.println("Parent Id: " + detectedText.textDetection().parentId()); System.out.println("Type: " + detectedText.textDetection().type()); System.out.println("Text: " + detectedText.textDetection().detectedText()); System.out.println(); } } while (textDetectionResponse != null && textDetectionResponse.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }

检测存储在 Amazon S3 存储桶内的视频中的人物。

import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.S3Object; import software.amazon.awssdk.services.rekognition.model.NotificationChannel; import software.amazon.awssdk.services.rekognition.model.StartPersonTrackingRequest; import software.amazon.awssdk.services.rekognition.model.Video; import software.amazon.awssdk.services.rekognition.model.StartPersonTrackingResponse; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.GetPersonTrackingResponse; import software.amazon.awssdk.services.rekognition.model.GetPersonTrackingRequest; import software.amazon.awssdk.services.rekognition.model.VideoMetadata; import software.amazon.awssdk.services.rekognition.model.PersonDetection; import java.util.List; /** * Before running this Java V2 code example, set up your development * environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class VideoPersonDetection { private static String startJobId = ""; public static void main(String[] args) { final String usage = """ Usage: <bucket> <video> <topicArn> <roleArn> Where: bucket - The name of the bucket in which the video is located (for example, (for example, myBucket).\s video - The name of video (for example, people.mp4).\s topicArn - The ARN of the Amazon Simple Notification Service (Amazon SNS) topic.\s roleArn - The ARN of the AWS Identity and Access Management (IAM) role to use.\s """; if (args.length != 4) { System.out.println(usage); System.exit(1); } String bucket = args[0]; String video = args[1]; String topicArn = args[2]; String roleArn = args[3]; Region region = Region.US_EAST_1; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .build(); NotificationChannel channel = NotificationChannel.builder() .snsTopicArn(topicArn) .roleArn(roleArn) .build(); startPersonLabels(rekClient, channel, bucket, video); getPersonDetectionResults(rekClient); System.out.println("This example is done!"); rekClient.close(); } public static void startPersonLabels(RekognitionClient rekClient, NotificationChannel channel, String bucket, String video) { try { S3Object s3Obj = S3Object.builder() .bucket(bucket) .name(video) .build(); Video vidOb = Video.builder() .s3Object(s3Obj) .build(); StartPersonTrackingRequest personTrackingRequest = StartPersonTrackingRequest.builder() .jobTag("DetectingLabels") .video(vidOb) .notificationChannel(channel) .build(); StartPersonTrackingResponse labelDetectionResponse = rekClient.startPersonTracking(personTrackingRequest); startJobId = labelDetectionResponse.jobId(); } catch (RekognitionException e) { System.out.println(e.getMessage()); System.exit(1); } } public static void getPersonDetectionResults(RekognitionClient rekClient) { try { String paginationToken = null; GetPersonTrackingResponse personTrackingResult = null; boolean finished = false; String status; int yy = 0; do { if (personTrackingResult != null) paginationToken = personTrackingResult.nextToken(); GetPersonTrackingRequest recognitionRequest = GetPersonTrackingRequest.builder() .jobId(startJobId) .nextToken(paginationToken) .maxResults(10) .build(); // Wait until the job succeeds while (!finished) { personTrackingResult = rekClient.getPersonTracking(recognitionRequest); status = personTrackingResult.jobStatusAsString(); if (status.compareTo("SUCCEEDED") == 0) finished = true; else { System.out.println(yy + " status is: " + status); Thread.sleep(1000); } yy++; } finished = false; // Proceed when the job is done - otherwise VideoMetadata is null. VideoMetadata videoMetaData = personTrackingResult.videoMetadata(); System.out.println("Format: " + videoMetaData.format()); System.out.println("Codec: " + videoMetaData.codec()); System.out.println("Duration: " + videoMetaData.durationMillis()); System.out.println("FrameRate: " + videoMetaData.frameRate()); System.out.println("Job"); List<PersonDetection> detectedPersons = personTrackingResult.persons(); for (PersonDetection detectedPerson : detectedPersons) { long seconds = detectedPerson.timestamp() / 1000; System.out.print("Sec: " + seconds + " "); System.out.println("Person Identifier: " + detectedPerson.person().index()); System.out.println(); } } while (personTrackingResult != null && personTrackingResult.nextToken() != null); } catch (RekognitionException | InterruptedException e) { System.out.println(e.getMessage()); System.exit(1); } } }

以下代码示例演示如何构建一个使用 Amazon Rekognition 按类别检测图像中对象的应用程序。

SDK适用于 Java 2.x

演示如何使用 Amazon API Rekognition Java 创建一款应用程序,该应用程序使用 Amazon Rekognition 按类别识别位于亚马逊简单存储服务 (Amazon S3) Simple S3 存储桶中的图像中的对象。该应用程序使用亚马逊简单电子邮件服务 (AmazonSES) 向管理员发送一封包含结果的电子邮件通知。

有关如何设置和运行的完整源代码和说明,请参阅上的完整示例GitHub

本示例中使用的服务
  • Amazon Rekognition

  • Amazon S3

  • Amazon SES

以下代码示例展示了如何使用 Amazon Rekognition 检测视频中的人物和物体。

SDK适用于 Java 2.x

演示如何使用 Amazon API Rekognition Java 创建应用程序来检测位于亚马逊简单存储服务 (Amazon S3) 存储桶中的视频中的人脸和物体。该应用程序使用亚马逊简单电子邮件服务 (AmazonSES) 向管理员发送一封包含结果的电子邮件通知。

有关如何设置和运行的完整源代码和说明,请参阅上的完整示例GitHub

本示例中使用的服务
  • Amazon Rekognition

  • Amazon S3

  • Amazon SES