As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.
Documente o conhecimento institucional a partir de entradas de voz usando o Amazon Bedrock e o Amazon Transcribe
Criado por Praveen Kumar Jeyarajan (AWS), Jundong Qiao (), Megan Wu (AWS) e Rajiv Upadhyay () AWS AWS
Repositório de códigos: genai-knowledge-capture | Ambiente: PoC ou piloto | Tecnologias: aprendizado de máquina e IA; produtividade empresarial; CloudNative |
AWSserviços: Amazon Bedrock; AWS Lambda AWSCDK; Amazon; Step AWS Functions; SNS Amazon Transcribe |
Resumo
Capturar o conhecimento institucional é fundamental para garantir o sucesso e a resiliência organizacional. O conhecimento institucional representa a sabedoria coletiva, os insights e as experiências acumuladas pelos funcionários ao longo do tempo, geralmente de natureza tácita e transmitidos informalmente. Essa riqueza de informações engloba abordagens exclusivas, melhores práticas e soluções para problemas complexos que talvez não estejam documentados em outro lugar. Ao formalizar e documentar esse conhecimento, as empresas podem preservar a memória institucional, promover a inovação, aprimorar os processos de tomada de decisão e acelerar as curvas de aprendizado para novos funcionários. Além disso, promove a colaboração, capacita indivíduos e cultiva uma cultura de melhoria contínua. Em última análise, aproveitar o conhecimento institucional ajuda as empresas a usar seu ativo mais valioso — a inteligência coletiva de sua força de trabalho — para enfrentar desafios, impulsionar o crescimento e manter a vantagem competitiva em ambientes de negócios dinâmicos.
Esse padrão explica como capturar conhecimento institucional por meio de gravações de voz de funcionários seniores. Ele usa o Amazon Transcribe e o Amazon Bedrock para documentação e verificação sistemáticas. Ao documentar esse conhecimento informal, você pode preservá-lo e compartilhá-lo com grupos subsequentes de funcionários. Esse esforço apóia a excelência operacional e melhora a eficácia dos programas de treinamento por meio da incorporação de conhecimentos práticos adquiridos por meio da experiência direta.
Pré-requisitos e limitações
Pré-requisitos
Uma AWS conta ativa
AWSCloud Development Kit (AWSCDK) versão 2.114.1 ou posterior, instalado e inicializado nas regiões ou
us-east-1
us-west-2
AWSAWSCDKKit de ferramentas versão 2.114.1 ou posterior, instalado
AWSInterface de linha de comando (AWSCLI), instalada e configurada
Permissões para criar recursos do Amazon Transcribe, Amazon Bedrock, Amazon Simple Storage Service (Amazon S3) e Lambda AWS
Limitações
Essa solução é implantada em uma única AWS conta.
Essa solução pode ser implantada somente em AWS regiões onde o Amazon Bedrock e o Amazon Transcribe estão disponíveis. Para obter informações sobre disponibilidade, consulte a documentação do Amazon Bedrock e do Amazon Transcribe.
Os arquivos de áudio devem estar em um formato compatível com o Amazon Transcribe. Para obter uma lista dos formatos compatíveis, consulte Formatos de mídia na documentação Transcreve.
Versões do produto
AWSSDKpara Python (Boto3) versão 1.34.57 ou posterior
LangChain versão 0.1.12 ou posterior
Arquitetura
A arquitetura representa um fluxo de trabalho sem servidor ativado. AWS AWSO Step Functions orquestra funções Lambda para processamento de áudio, análise de texto e geração de documentos. O diagrama a seguir mostra o fluxo de trabalho do Step Functions, também conhecido como máquina de estado.
Cada etapa na máquina de estado é gerenciada por uma função Lambda distinta. A seguir estão as etapas do processo de geração de documentos:
A função
preprocess
Lambda valida a entrada passada para o Step Functions e lista todos os arquivos de áudio presentes no caminho da pasta Amazon S3 fornecida. URI As funções downstream do Lambda no fluxo de trabalho usam a lista de arquivos para validar, resumir e gerar o documento.A função
transcribe
Lambda usa o Amazon Transcribe para converter arquivos de áudio em transcrições de texto. Essa função Lambda é responsável por iniciar o processo de transcrição e transformar com precisão a fala em texto, que é então armazenado para processamento posterior.A função
validate
Lambda analisa as transcrições do texto, determinando a relevância das respostas às perguntas iniciais. Ao usar um modelo de linguagem grande (LLM) por meio do Amazon Bedrock, ele identifica e separa as respostas sobre o tópico das respostas fora do tópico.A função
summarize
Lambda usa o Amazon Bedrock para gerar um resumo coerente e conciso das respostas sobre o tópico.A função
generate
Lambda reúne os resumos em um documento bem estruturado. Ele pode formatar o documento de acordo com modelos predefinidos e incluir qualquer conteúdo ou dados adicionais necessários.Se alguma das funções do Lambda falhar, você receberá uma notificação por e-mail por meio do Amazon Simple Notification Service (AmazonSNS).
Durante todo esse processo, o AWS Step Functions garante que cada função Lambda seja iniciada na sequência correta. Essa máquina de estado tem a capacidade de processamento paralelo para aumentar a eficiência. Um bucket do Amazon S3 atua como o repositório de armazenamento central, dando suporte ao fluxo de trabalho gerenciando os vários formatos de mídia e documentos envolvidos.
Ferramentas
AWSserviços
O Amazon Bedrock é um serviço totalmente gerenciado que disponibiliza modelos básicos de alto desempenho (FMs) das principais startups de IA e da Amazon para seu uso por meio de um sistema unificado. API
AWSO Lambda é um serviço de computação que ajuda você a executar código sem precisar provisionar ou gerenciar servidores. Ele executa o código somente quando necessário e dimensiona automaticamente, assim, você paga apenas pelo tempo de computação usado.
O Amazon Simple Notification Service (AmazonSNS) ajuda você a coordenar e gerenciar a troca de mensagens entre editores e clientes, incluindo servidores web e endereços de e-mail.
O Amazon Simple Storage Service (Amazon S3) é um serviço de armazenamento de objetos baseado na nuvem que ajuda você a armazenar, proteger e recuperar qualquer quantidade de dados.
AWSO Step Functions é um serviço de orquestração sem servidor que ajuda você a combinar funções AWS Lambda e outros AWS serviços para criar aplicativos essenciais para os negócios.
O Amazon Transcribe é um serviço automático de reconhecimento de fala que usa modelos de aprendizado de máquina para converter áudio em texto.
Outras ferramentas
LangChain
é uma estrutura para o desenvolvimento de aplicativos que são alimentados por grandes modelos de linguagem (LLMs).
Repositório de código
O código desse padrão está disponível no GitHub genai-knowledge-capture
O repositório de código contém os seguintes arquivos e pastas:
assets
pasta — Os ativos estáticos da solução, como o diagrama de arquitetura e o conjunto de dados públicocode/lambdas
folder — O código Python para todas as funções do Lambdacode/lambdas/generate
pasta - O código Python que gera um documento a partir dos dados resumidos no bucket do S3code/lambdas/preprocess
folder - O código Python que processa as entradas para a máquina de estado Step Functionscode/lambdas/summarize
pasta - O código Python que resume os dados transcritos usando o serviço Amazon Bedrockcode/lambdas/transcribe
pasta - O código Python que converte dados de fala (arquivo de áudio) em texto usando o Amazon Transcribecode/lambdas/validate
folder - O código Python que valida se todas as respostas pertencem ao mesmo tópico
code/code_stack.py
— O arquivo Python de AWS CDK construção usado para criar recursos AWSapp.py
— O arquivo Python do AWS CDK aplicativo usado para implantar AWS recursos na conta de destino AWSrequirements.txt
— A lista de todas as dependências do Python que devem ser instaladas para o AWS CDKcdk.json
— O arquivo de entrada para fornecer os valores necessários para criar recursos
Práticas recomendadas
O exemplo de código fornecido é apenas para fins proof-of-concept (PoC) ou piloto. Se você quiser levar a solução para a produção, use as seguintes práticas recomendadas:
Ativar o registro de acesso ao Amazon S3
Ativar registros VPC de fluxo
Épicos
Tarefa | Descrição | Habilidades necessárias |
---|---|---|
Exporte variáveis para a conta e a AWS região. | Para fornecer AWS credenciais para o AWS CDK usando variáveis de ambiente, execute os comandos a seguir.
| AWS DevOps, DevOps engenheiro |
Configure o perfil AWS CLI nomeado. | Para configurar o perfil AWS CLI nomeado para a conta, siga as instruções em Configuração e configurações do arquivo de credenciais. | AWS DevOps, DevOps engenheiro |
Tarefa | Descrição | Habilidades necessárias |
---|---|---|
Clone o repositório em sua estação de trabalho local. | Para clonar o genai-knowledge-capture
| AWS DevOps, DevOps engenheiro |
(Opcional) Substitua os arquivos de áudio. | Para personalizar o aplicativo de amostra para incorporar seus próprios dados, faça o seguinte:
| AWS DevOps, DevOps engenheiro |
Configure o ambiente virtual Python. | Para ativar o ambiente virtual do Python, execute os comandos a seguir.
| AWS DevOps, DevOps engenheiro |
Sintetize o código. AWS CDK | Para converter o código em uma configuração de AWS CloudFormation pilha, execute o comando a seguir.
| AWS DevOps, DevOps engenheiro |
Tarefa | Descrição | Habilidades necessárias |
---|---|---|
Provisione o acesso ao modelo básico. | Ative o acesso ao modelo Anthropic Claude 3 Sonnet para sua conta. AWS Para obter instruções, consulte Adicionar acesso ao modelo na documentação do Bedrock. | AWS DevOps |
Implante recursos na conta. | Para implantar recursos na AWS conta usando o AWSCDK, faça o seguinte:
| AWS DevOps, DevOps engenheiro |
Inscreva-se no SNS tópico da Amazon. | Para assinar o SNS tópico da Amazon para receber notificações, faça o seguinte:
| Geral AWS |
Tarefa | Descrição | Habilidades necessárias |
---|---|---|
Execute uma máquina de estado. |
| Desenvolvedor de aplicativos, Geral AWS |
Tarefa | Descrição | Habilidades necessárias |
---|---|---|
Remova os AWS recursos. | Depois de testar a solução, limpe os recursos:
| AWS DevOps, DevOps engenheiro |
Recursos relacionados
AWSdocumentação
Recursos do Amazon Bedrock:
AWSCDKrecursos:
AWSRecursos do Step Functions:
Outros recursos