JupyterLab バージョニング - Amazon SageMaker

翻訳は機械翻訳により提供されています。提供された翻訳内容と英語版の間で齟齬、不一致または矛盾がある場合、英語版が優先します。

JupyterLab バージョニング

重要

Amazon SageMaker Studio または Amazon SageMaker Studio Classic が Amazon SageMaker リソースを作成できるようにするカスタム IAM ポリシーは、それらのリソースにタグを追加するアクセス許可も付与する必要があります。Studio と Studio Classic は、作成したリソースに自動的にタグ付けするため、リソースにタグを追加するアクセス許可が必要です。IAM ポリシーで Studio と Studio Classic がリソースの作成を許可しているが、タグ付けを許可していない場合、リソースの作成時にAccessDenied「」エラーが発生する可能性があります。詳細については、「リソースにタグ付け SageMakerするためのアクセス許可を提供する」を参照してください。

AWS Amazon の マネージドポリシー SageMaker SageMaker リソースを作成するアクセス許可を付与する には、それらのリソースの作成中にタグを追加するアクセス許可が既に含まれています。

重要

2023 年 11 月 30 日現在、以前の Amazon SageMaker Studio エクスペリエンスは Amazon SageMaker Studio Classic という名前になりました。次のセクションは、Studio Classic アプリケーションの使用に固有のものです。更新された Studio エクスペリエンスの使用については、「」を参照してくださいAmazon SageMaker Studio

Amazon SageMaker Studio Classic インターフェイスは、ノートブック JupyterLab、コード、データ用のウェブベースのインタラクティブな開発環境である に基づいています。Studio Classic では、 JupyterLab 1 と JupyterLab 3 の両方の使用がサポートされるようになりました。Studio Classic JupyterLab の のデフォルトバージョンは JupyterLab 3 です。 AWS Management Console より前の または 08/31/2022 より前の を使用して Amazon SageMaker ドメインとユーザープロファイルを作成した場合02/22/23、Studio Classic AWS Command Line Interface インスタンスのデフォルトは JupyterLab 1 です。08/31/2022 以降、Amazon SageMaker Studio Classic JupyterLab のバージョン 1 はセキュリティ修正のみを受け取ります。ユーザーは、実行するバージョンを選択することができます。ただし、ユーザープロファイルごとに JupyterLab 一度に実行できるインスタンスは 1 つだけです。の JupyterLab複数のバージョンを同時に実行することはできません。

03/31/23 以降、Studio Classic は JupyterLab 3 つのアプリケーションの作成のみをサポートします。その後、Studio Classic は JupyterLab 1 つのアプリケーション作成のサポートを停止します。04/30/2023 に、Studio Classic は JupyterLab 1 を実行する既存のアプリケーションをすべて削除します。「」の手順に従って、04/30/2023 より前に既存の JupyterLab1 つのアプリケーションを JupyterLab 3 に更新しますコンソールからアプリケーションの JupyterLab バージョンを表示および更新する

JupyterLab 3

JupyterLab 3 には、以前のバージョンでは使用できない以下の機能が含まれています。これらの機能の詳細については、JupyterLab 「3.0 がリリースされました」を参照してください。

  • Base Python 2.0 カーネルおよびデータサイエンス 2.0 カーネルを使用する際のビジュアルデバッガー

  • ファイルブラウザのフィルター

  • 目次 (TOC)

  • 多言語サポート

  • シンプルモード

  • シングルインターフェイスモード

JupyterLab 3 の重要な変更点

JupyterLab 3 を使用する場合は、次の点を考慮してください。

  • を使用して JupyterLab バージョンを設定する場合は AWS CLI、 のイメージリストからリージョンと JupyterLab バージョンに対応するイメージを選択しますから AWS CLI

  • JupyterLab 3 では、拡張機能をインストールする前に studio conda 環境をアクティブ化する必要があります。詳細については、「 JupyterLab および Jupyter Server 拡張機能のインストール」を参照してください。

  • Debugger は、次のイメージを使用する場合にのみサポートされます。

    • Base Python 2.0

    • Data Science 2.0

    • Base Python 3.0

    • Data Science 3.0

IAM ポリシー条件キーを使用したデフォルト JupyterLab バージョンの制限

IAM ポリシー条件キーを使用して、ユーザーが起動できる のバージョンを制限 JupyterLab できます。

次のポリシーは、ドメインレベルで JupyterLab バージョンを制限する方法を示しています。

{ "Version": "2012-10-17", "Statement": [ { "Sid": "Block users from creating JupyterLab 3 apps at the domain level", "Effect": "Deny", "Action": [ "sagemaker:CreateDomain", "sagemaker:UpdateDomain" ], "Resource": "*", "Condition": { "ForAnyValue:StringLike": { "sagemaker:ImageArns": "*image/jupyter-server-3" } } } ] }

次のポリシーは、ユーザープロファイルレベルで JupyterLab バージョンを制限する方法を示しています。

{ "Version": "2012-10-17", "Statement": [ { "Sid": "Block users from creating JupyterLab 3 apps at the user profile level", "Effect": "Deny", "Action": [ "sagemaker:CreateUserProfile", "sagemaker:UpdateUserProfile" ], "Resource": "*", "Condition": { "ForAnyValue:StringLike": { "sagemaker:ImageArns": "*image/jupyter-server-3" } } } ] }

次のポリシーは、アプリケーションレベルで JupyterLab バージョンを制限する方法を示しています。このポリシーを適用するには、CreateApp リクエストにイメージ ARN を含める必要があります。

{ "Version": "2012-10-17", "Statement": [ { "Sid": "Block users from creating JupyterLab 3 apps at the application level", "Effect": "Deny", "Action": "sagemaker:CreateApp", "Resource": "*", "Condition": { "ForAnyValue:StringLike": { "sagemaker:ImageArns": "*image/jupyter-server-3" } } } ] }

デフォルト JupyterLabバージョンの設定

以下のセクションでは、 コンソールまたは を使用して Studio Classic のデフォルト JupyterLab バージョンを設定する方法を示します AWS CLI。 

コンソールから

リソースの作成時に、ドメインレベルまたはユーザープロファイルレベルで使用するデフォルト JupyterLab バージョンを選択できます。コンソールを使用してデフォルト JupyterLab バージョンを設定するには、「」を参照してくださいAmazon SageMaker ドメインの概要。 

から AWS CLI

を使用して、ドメインレベルまたはユーザープロファイルレベルで使用するデフォルト JupyterLab バージョンを選択できます AWS CLI。 

を使用してデフォルト JupyterLab バージョンを設定するには AWS CLI、 AWS CLI コマンドの一部として目的のデフォルト JupyterLab バージョンの ARN を含める必要があります。この ARN は、 SageMaker ドメインのバージョンとリージョンによって異なります。 

次の表に、各リージョンで使用可能な JupyterLab バージョンの ARNs を示します。

リージョン JL1 JL3
us-east-1 arn:aws:sagemaker:us-east-1:081325390199:image/jupyter-server arn:aws:sagemaker:us-east-1:081325390199:image/jupyter-server-3
us-east-2 arn:aws:sagemaker:us-east-2:429704687514:image/jupyter-server arn:aws:sagemaker:us-east-2:429704687514:image/jupyter-server-3
us-west-1 arn:aws:sagemaker:us-west-1:742091327244:image/jupyter-server arn:aws:sagemaker:us-west-1:742091327244:image/jupyter-server-3
us-west-2 arn:aws:sagemaker:us-west-2:236514542706:image/jupyter-server arn:aws:sagemaker:us-west-2:236514542706:image/jupyter-server-3
af-south-1 arn:aws:sagemaker:af-south-1:559312083959:image/jupyter-server arn:aws:sagemaker:af-south-1:559312083959:image/jupyter-server-3
ap-east-1 arn:aws:sagemaker:ap-east-1:493642496378:image/jupyter-server arn:aws:sagemaker:ap-east-1:493642496378:image/jupyter-server-3
ap-south-1 arn:aws:sagemaker:ap-south-1:394103062818:image/jupyter-server arn:aws:sagemaker:ap-south-1:394103062818:image/jupyter-server-3
ap-northeast-2 arn:aws:sagemaker:ap-northeast-2:806072073708:image/jupyter-server arn:aws:sagemaker:ap-northeast-2:806072073708:image/jupyter-server-3
ap-southeast-1 arn:aws:sagemaker:ap-southeast-1:492261229750:image/jupyter-server arn:aws:sagemaker:ap-southeast-1:492261229750:image/jupyter-server-3
ap-southeast-2 arn:aws:sagemaker:ap-southeast-2:452832661640:image/jupyter-server arn:aws:sagemaker:ap-southeast-2:452832661640:image/jupyter-server-3
ap-northeast-1 arn:aws:sagemaker:ap-northeast-1:102112518831:image/jupyter-server arn:aws:sagemaker:ap-northeast-1:102112518831:image/jupyter-server-3
ca-central-1 arn:aws:sagemaker:ca-central-1:310906938811:image/jupyter-server arn:aws:sagemaker:ca-central-1:310906938811:image/jupyter-server-3
eu-central-1 arn:aws:sagemaker:eu-central-1:936697816551:image/jupyter-server arn:aws:sagemaker:eu-central-1:936697816551:image/jupyter-server-3
eu-west-1 arn:aws:sagemaker:eu-west-1:470317259841:image/jupyter-server arn:aws:sagemaker:eu-west-1:470317259841:image/jupyter-server-3
eu-west-2 arn:aws:sagemaker:eu-west-2:712779665605:image/jupyter-server arn:aws:sagemaker:eu-west-2:712779665605:image/jupyter-server-3
eu-west-3 arn:aws:sagemaker:eu-west-3:615547856133:image/jupyter-server arn:aws:sagemaker:eu-west-3:615547856133:image/jupyter-server-3
eu-north-1 arn:aws:sagemaker:eu-north-1:243637512696:image/jupyter-server arn:aws:sagemaker:eu-north-1:243637512696:image/jupyter-server-3
eu-south-1 arn:aws:sagemaker:eu-south-1:592751261982:image/jupyter-server arn:aws:sagemaker:eu-south-1:592751261982:image/jupyter-server-3
eu-south-2 arn:aws:sagemaker:eu-south-2:127363102723:image/jupyter-server arn:aws:sagemaker:eu-south-2:127363102723:image/jupyter-server-3
sa-east-1 arn:aws:sagemaker:sa-east-1:782484402741:image/jupyter-server arn:aws:sagemaker:sa-east-1:782484402741:image/jupyter-server-3
cn-north-1 arn:aws-cn:sagemaker:cn-north-1:390048526115:image/jupyter-server arn:aws-cn:sagemaker:cn-north-1:390048526115:image/jupyter-server-3
cn-northwest-1 arn:aws-cn:sagemaker:cn-northwest-1:390780980154:image/jupyter-server arn:aws-cn:sagemaker:cn-northwest-1:390780980154:image/jupyter-server-3

ドメインの作成または更新

デフォルト JupyterServer バージョンをドメインレベルで設定するには、 CreateDomainまたは を呼び出しUpdateDomainUserSettings.JupyterServerAppSettings.DefaultResourceSpec.SageMakerImageArnフィールドを渡します。

以下は、 を使用して JupyterLab 3 をデフォルトとするドメインを作成する方法を示しています AWS CLI。

aws --region <REGION> \ sagemaker create-domain \ --domain-name <NEW_DOMAIN_NAME> \ --auth-mode <AUTHENTICATION_MODE> \ --subnet-ids <SUBNET-IDS> \ --vpc-id <VPC-ID> \ --default-user-settings '{   "JupyterServerAppSettings": {     "DefaultResourceSpec": {       "SageMakerImageArn": "arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:image/jupyter-server-3",       "InstanceType": "system"     }   } }'

以下は、 を使用して JupyterLab 3 をデフォルトとして使用するようにドメインを更新する方法を示しています AWS CLI。

aws --region <REGION> \ sagemaker update-domain \ --domain-id <YOUR_DOMAIN_ID> \ --default-user-settings '{ "JupyterServerAppSettings": { "DefaultResourceSpec": { "SageMakerImageArn": "arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:image/jupyter-server-3", "InstanceType": "system" } } }'

ユーザープロファイルの作成または更新

プロファイルCreateUserまたはプロファイルを呼び出して フィールドをUserSettings.JupyterServerAppSettings.DefaultResourceSpec.SageMakerImageArn渡すことで、ユーザーUpdateUserプロファイルレベルでデフォルト JupyterServer バージョンを設定できます。

を使用して、既存のドメインで JupyterLab 3 をデフォルトとしてユーザープロファイルを作成する方法を以下に示します AWS CLI。

aws --region <REGION> \ sagemaker create-user-profile \ --domain-id <YOUR_DOMAIN_ID> \ --user-profile-name <NEW_USERPROFILE_NAME> \ --query UserProfileArn --output text \ --user-settings '{   "JupyterServerAppSettings": {     "DefaultResourceSpec": {       "SageMakerImageArn": "arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:image/jupyter-server-3",       "InstanceType": "system"     }   } }'

を使用して、 JupyterLab 3 をデフォルトとして使用するようにユーザープロファイルを更新する方法を次に示します AWS CLI。

aws --region <REGION> \ sagemaker update-user-profile \ --domain-id <YOUR_DOMAIN_ID> \ --user-profile-name <EXISTING_USERPROFILE_NAME> \ --user-settings '{ "JupyterServerAppSettings": { "DefaultResourceSpec": { "SageMakerImageArn": "arn:aws:sagemaker:<REGION>:<ACCOUNT_ID>:image/jupyter-server-3", "InstanceType": "system" } } }'

コンソールからアプリケーションの JupyterLab バージョンを表示および更新する

以下は、アプリケーションの JupyterLab バージョンを表示および更新する方法を示しています。

  1. SageMaker ドメインページに移動します。

  2. ユーザープロファイルを表示するドメインを選択します。

  3. アプリケーションを表示するユーザーを選択します。

  4. アプリケーションの JupyterLab バージョンを表示するには、アプリケーションの名前を選択します。

  5. JupyterLab バージョンを更新するには、アクション を選択します。

  6. ドロップダウンメニューから、 JupyterLab バージョンの変更 を選択します。

  7. Studio Classic の設定ページで、ドロップダウンメニューから JupyterLab バージョンを選択します。

  8. ユーザープロファイル JupyterLab のバージョンが正常に更新されたら、 JupyterServer アプリケーションを再起動してバージョンの変更を有効にします。 JupyterServer アプリケーションの再起動の詳細については、「」を参照してください SageMaker Studio Classic のシャットダウンと更新

JupyterLab および Jupyter Server 拡張機能のインストール

JupyterLab および Jupyter Server 拡張機能をインストールするプロセスは、Studio Classic インスタンス JupyterLab のバージョンによって異なります。 JupyterLab 1 では、conda 環境をアクティブ化せずにターミナルを開き、拡張機能をインストールできます。 JupyterLab 3 では、拡張機能をインストールする前に studio conda 環境をアクティブ化する必要があります。この方法は、Studio Classic 内から拡張機能をインストールするか、ライフサイクル設定スクリプトを使用する場合によって異なります。

Studio Classic 内からの拡張機能のインストール

Studio Classic 内から拡張機能をインストールするには、拡張機能をインストールする前にstudio環境をアクティブ化する必要があります。

# Before installing extensions conda activate studio # Install your extensions pip install <JUPYTER_EXTENSION> # After installing extensions conda deactivate

ライフサイクル設定スクリプトを使用して拡張機能をインストールする

ライフサイクル設定スクリプトに JupyterLab と Jupyter Server 拡張機能をインストールする場合は、スクリプトを JupyterLab 3 で動作するように変更する必要があります。以下のセクションでは、既存および新規のライフサイクル設定スクリプトで必要なコードについて説明します。

既存のライフサイクル設定スクリプト

両方のバージョンの で動作する必要がある既存のライフサイクル設定スクリプトを再利用する場合は JupyterLab、スクリプトで次のコードを使用します。

# Before installing extension export AWS_SAGEMAKER_JUPYTERSERVER_IMAGE="${AWS_SAGEMAKER_JUPYTERSERVER_IMAGE:-'jupyter-server'}" if [ "$AWS_SAGEMAKER_JUPYTERSERVER_IMAGE" = "jupyter-server-3" ] ; then eval "$(conda shell.bash hook)" conda activate studio fi; # Install your extensions pip install <JUPYTER_EXTENSION> # After installing extension if [ "$AWS_SAGEMAKER_JUPYTERSERVER_IMAGE" = "jupyter-server-3" ]; then conda deactivate fi;

新しいライフサイクル設定スクリプト

JupyterLab 3 のみを使用する新しいライフサイクル設定スクリプトを作成する場合は、スクリプトで次のコードを使用できます。

# Before installing extension eval "$(conda shell.bash hook)" conda activate studio # Install your extensions pip install <JUPYTER_EXTENSION> conda deactivate