쿠키 기본 설정 선택

당사는 사이트와 서비스를 제공하는 데 필요한 필수 쿠키 및 유사한 도구를 사용합니다. 고객이 사이트를 어떻게 사용하는지 파악하고 개선할 수 있도록 성능 쿠키를 사용해 익명의 통계를 수집합니다. 필수 쿠키는 비활성화할 수 없지만 '사용자 지정' 또는 ‘거부’를 클릭하여 성능 쿠키를 거부할 수 있습니다.

사용자가 동의하는 경우 AWS와 승인된 제3자도 쿠키를 사용하여 유용한 사이트 기능을 제공하고, 사용자의 기본 설정을 기억하고, 관련 광고를 비롯한 관련 콘텐츠를 표시합니다. 필수가 아닌 모든 쿠키를 수락하거나 거부하려면 ‘수락’ 또는 ‘거부’를 클릭하세요. 더 자세한 내용을 선택하려면 ‘사용자 정의’를 클릭하세요.

DataProcessing - Amazon SageMaker
이 페이지는 귀하의 언어로 번역되지 않았습니다. 번역 요청

DataProcessing

The data structure used to specify the data to be used for inference in a batch transform job and to associate the data that is relevant to the prediction results in the output. The input filter provided allows you to exclude input data that is not needed for inference in a batch transform job. The output filter provided allows you to include input data relevant to interpreting the predictions in the output from the job. For more information, see Associate Prediction Results with their Corresponding Input Records.

Contents

InputFilter

A JSONPath expression used to select a portion of the input data to pass to the algorithm. Use the InputFilter parameter to exclude fields, such as an ID column, from the input. If you want SageMaker to pass the entire input dataset to the algorithm, accept the default value $.

Examples: "$", "$[1:]", "$.features"

Type: String

Length Constraints: Minimum length of 0. Maximum length of 63.

Required: No

JoinSource

Specifies the source of the data to join with the transformed data. The valid values are None and Input. The default value is None, which specifies not to join the input with the transformed data. If you want the batch transform job to join the original input data with the transformed data, set JoinSource to Input. You can specify OutputFilter as an additional filter to select a portion of the joined dataset and store it in the output file.

For JSON or JSONLines objects, such as a JSON array, SageMaker adds the transformed data to the input JSON object in an attribute called SageMakerOutput. The joined result for JSON must be a key-value pair object. If the input is not a key-value pair object, SageMaker creates a new JSON file. In the new JSON file, and the input data is stored under the SageMakerInput key and the results are stored in SageMakerOutput.

For CSV data, SageMaker takes each row as a JSON array and joins the transformed data with the input by appending each transformed row to the end of the input. The joined data has the original input data followed by the transformed data and the output is a CSV file.

For information on how joining in applied, see Workflow for Associating Inferences with Input Records.

Type: String

Valid Values: Input | None

Required: No

OutputFilter

A JSONPath expression used to select a portion of the joined dataset to save in the output file for a batch transform job. If you want SageMaker to store the entire input dataset in the output file, leave the default value, $. If you specify indexes that aren't within the dimension size of the joined dataset, you get an error.

Examples: "$", "$[0,5:]", "$['id','SageMakerOutput']"

Type: String

Length Constraints: Minimum length of 0. Maximum length of 63.

Required: No

See Also

For more information about using this API in one of the language-specific AWS SDKs, see the following:

프라이버시사이트 이용 약관쿠키 기본 설정
© 2025, Amazon Web Services, Inc. 또는 계열사. All rights reserved.