Operational Best Practices for FedRAMP(Moderate) - AWS Config

Operational Best Practices for FedRAMP(Moderate)

Conformance packs provide a general-purpose compliance framework designed to enable you to create security, operational or cost-optimization governance checks using managed or custom AWS Config rules and AWS Config remediation actions. Conformance Packs, as sample templates, are not designed to fully ensure compliance with a specific governance or compliance standard. You are responsible for making your own assessment of whether your use of the Services meets applicable legal and regulatory requirements.

The following provides a sample mapping between the Federal Risk and Authorization Management Program (FedRAMP) and AWS managed Config rules. Each Config rule applies to a specific AWS resource, and relates to one or more FedRAMP controls. A FedRAMP control can be related to multiple Config rules. Refer to the table below for more detail and guidance related to these mappings.

This Conformance Pack was validated by AWS Security Assurance Services LLC (AWS SAS), which is a team of Payment Card Industry Qualified Security Assessors (QSAs), HITRUST Certified Common Security Framework Practitioners (CCSFPs), and compliance professionals certified to provide guidance and assessments for various industry frameworks. AWS SAS professionals designed this Conformance Pack to enable a customer to align to a subset of the FedRAMP controls.

AWS Region: All supported AWS Regions except Middle East (Bahrain)

Control ID Control Description AWS Config Rule Guidance
AC-2(1) The organization employs automated mechanisms to support the management of information system accounts.

secretsmanager-scheduled-rotation-success-check

This rule ensures that AWS Secrets Manager secrets have rotated successfully according to the rotation schedule. Rotating secrets on a regular schedule can shorten the period that a secret is active, and potentially reduce the business impact if it is compromised.
AC-2(1) The organization employs automated mechanisms to support the management of information system accounts.

iam-password-policy

The identities and the credentials are issued, managed, and verified based on an organizational IAM password policy. They meet or exceed requirements as stated by NIST SP 800-63 and the Centers for Internet Security (CIS) AWS Foundations Benchmark for password strength. This rule allows you to optionally set RequireUppercaseCharacters (AWS Foundational Security Best Practices value: true), RequireLowercaseCharacters (AWS Foundational Security Best Practices value: true), RequireSymbols (AWS Foundational Security Best Practices value: true), RequireNumbers (AWS Foundational Security Best Practices value: true), MinimumPasswordLength (AWS Foundational Security Best Practices value: 14), PasswordReusePrevention (FedRAMP Parameter: 24), and MaxPasswordAge (AWS Foundational Security Best Practices value: 90) for your IAM Password Policy. The actual values should reflect your organization's policies.
AC-2(1) The organization employs automated mechanisms to support the management of information system accounts.

access-keys-rotated

The credentials are audited for authorized devices, users, and processes by ensuring IAM access keys are rotated as per organizational policy. Changing the access keys on a regular schedule is a security best practice. It shortens the period an access key is active and reduces the business impact if the keys are compromised. This rule requires an access key rotation value (Config Default: 90). The actual value should reflect your organization's policies.
AC-2(1) The organization employs automated mechanisms to support the management of information system accounts.

iam-user-unused-credentials-check

AWS Identity and Access Management (IAM) can help you with access permissions and authorizations by checking for IAM passwords and access keys that are not used for a specified time period. If these unused credentials are identified, you should disable and/or remove the credentials, as this may violate the principle of least privilege. This rule requires you to set a value to the maxCredentialUsageAge (Config Default: 90). The actual value should reflect your organization's policies.
AC-2(1) The organization employs automated mechanisms to support the management of information system accounts.

iam-user-group-membership-check

AWS Identity and Access Management (IAM) can help you restrict access permissions and authorizations, by ensuring IAM users are members of at least one group. Allowing users more privileges than needed to complete a task may violate the principle of least privilege and separation of duties.
AC-2(1) The organization employs automated mechanisms to support the management of information system accounts.

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
AC-2(1) The organization employs automated mechanisms to support the management of information system accounts.

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
AC-2(3) The information system automatically disables inactive accounts after 90 days for user accounts.

iam-user-unused-credentials-check

AWS Identity and Access Management (IAM) can help you with access permissions and authorizations by checking for IAM passwords and access keys that are not used for a specified time period. If these unused credentials are identified, you should disable and/or remove the credentials, as this may violate the principle of least privilege. This rule requires you to set a value to the maxCredentialUsageAge (FedRAMP Parameter: 90). The actual value should reflect your organization's policies.
AC-2(4) The information system automatically audits account creation, modification, enabling, disabling, and removal actions, and notifies [Assignment: organization-defined personnel or roles].

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
AC-2(4) The information system automatically audits account creation, modification, enabling, disabling, and removal actions, and notifies [Assignment: organization-defined personnel or roles].

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
AC-2(4) The information system automatically audits account creation, modification, enabling, disabling, and removal actions, and notifies [Assignment: organization-defined personnel or roles].

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
AC-2(4) The information system automatically audits account creation, modification, enabling, disabling, and removal actions, and notifies [Assignment: organization-defined personnel or roles].

cloudtrail-enabled

AWS CloudTrail can help in non-repudiation by recording AWS Management Console actions and API calls. You can identify the users and AWS accounts that called an AWS service, the source IP address where the calls generated, and the timings of the calls. Details of captured data are seen within AWS CloudTrail Record Contents.
AC-2(4) The information system automatically audits account creation, modification, enabling, disabling, and removal actions, and notifies [Assignment: organization-defined personnel or roles].

multi-region-cloudtrail-enabled

AWS CloudTrail records AWS Management Console actions and API calls. You can identify which users and accounts called AWS, the source IP address from where the calls were made, and when the calls occurred. CloudTrail will deliver log files from all AWS Regions to your S3 bucket if MULTI_REGION_CLOUD_TRAIL_ENABLED is enabled. Additionally, when AWS launches a new Region, CloudTrail will create the same trail in the new Region. As a result, you will receive log files containing API activity for the new Region without taking any action.
AC-2(4) The information system automatically audits account creation, modification, enabling, disabling, and removal actions, and notifies [Assignment: organization-defined personnel or roles].

rds-logging-enabled

To help with logging and monitoring within your environment, ensure Amazon Relational Database Service (Amazon RDS) logging is enabled. With Amazon RDS logging, you can capture events such as connections, disconnections, queries, or tables queried.
AC-2(4) The information system automatically audits account creation, modification, enabling, disabling, and removal actions, and notifies [Assignment: organization-defined personnel or roles].

cloudwatch-alarm-action-check

Amazon CloudWatch alarms alert when a metric breaches the threshold for a specified number of evaluation periods. The alarm performs one or more actions based on the value of the metric or expression relative to a threshold over a number of time periods. This rule requires a value for alarmActionRequired (Config Default: True), insufficientDataActionRequired (Config Default: True), okActionRequired (Config Default: False). The actual value should reflect the alarm actions for your environment.
AC-2(4) The information system automatically audits account creation, modification, enabling, disabling, and removal actions, and notifies [Assignment: organization-defined personnel or roles].

redshift-cluster-configuration-check

To protect data at rest, ensure that encryption is enabled for your Amazon Redshift clusters. You must also ensure that required configurations are deployed on Amazon Redshift clusters. The audit logging should be enabled to provide information about connections and user activities in the database. This rule requires that a value is set for clusterDbEncrypted (Config Default : TRUE), and loggingEnabled (Config Default: TRUE). The actual values should reflect your organization's policies.
AC-2(12)(a) The organization: a. Monitors information system accounts for [Assignment: organization-defined atypical use].

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
AC-2(12)(a) The organization: a. Monitors information system accounts for [Assignment: organization-defined atypical use].

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
AC-2(f) The organization: f. Creates, enables, modifies, disables, and removes information system accounts in accordance with [Assignment: organization-defined procedures or conditions].

iam-user-unused-credentials-check

AWS Identity and Access Management (IAM) can help you with access permissions and authorizations by checking for IAM passwords and access keys that are not used for a specified time period. If these unused credentials are identified, you should disable and/or remove the credentials, as this may violate the principle of least privilege. This rule requires you to set a value to the maxCredentialUsageAge (Config Default: 90). The actual value should reflect your organization's policies.
AC-2(f) The organization: f. Creates, enables, modifies, disables, and removes information system accounts in accordance with [Assignment: organization-defined procedures or conditions].

iam-password-policy

The identities and the credentials are issued, managed, and verified based on an organizational IAM password policy. They meet or exceed requirements as stated by NIST SP 800-63 and the Centers for Internet Security (CIS) AWS Foundations Benchmark for password strength. This rule allows you to optionally set RequireUppercaseCharacters (AWS Foundational Security Best Practices value: true), RequireLowercaseCharacters (AWS Foundational Security Best Practices value: true), RequireSymbols (AWS Foundational Security Best Practices value: true), RequireNumbers (AWS Foundational Security Best Practices value: true), MinimumPasswordLength (AWS Foundational Security Best Practices value: 14), PasswordReusePrevention (FedRAMP Parameter: 24), and MaxPasswordAge (AWS Foundational Security Best Practices value: 90) for your IAM Password Policy. The actual values should reflect your organization's policies.
AC-2(f) The organization: f. Creates, enables, modifies, disables, and removes information system accounts in accordance with [Assignment: organization-defined procedures or conditions].

iam-root-access-key-check

Access to systems and assets can be controlled by checking that the root user does not have access keys attached to their AWS Identity and Access Management (IAM) role. Ensure that the root access keys are deleted. Instead, create and use role-based AWS accounts to help to incorporate the principle of least functionality.
AC-2(g) The organization: g. Monitors the use of information system accounts.

redshift-cluster-configuration-check

To protect data at rest, ensure that encryption is enabled for your Amazon Redshift clusters. You must also ensure that required configurations are deployed on Amazon Redshift clusters. The audit logging should be enabled to provide information about connections and user activities in the database. This rule requires that a value is set for clusterDbEncrypted (Config Default : TRUE), and loggingEnabled (Config Default: TRUE). The actual values should reflect your organization's policies.
AC-2(g) The organization: g. Monitors the use of information system accounts.

s3-bucket-logging-enabled

Amazon Simple Storage Service (Amazon S3) server access logging provides a method to monitor the network for potential cybersecurity events. The events are monitored by capturing detailed records for the requests that are made to an Amazon S3 bucket. Each access log record provides details about a single access request. The details include the requester, bucket name, request time, request action, response status, and an error code, if relevant.
AC-2(g) The organization: g. Monitors the use of information system accounts.

cloudtrail-enabled

AWS CloudTrail can help in non-repudiation by recording AWS Management Console actions and API calls. You can identify the users and AWS accounts that called an AWS service, the source IP address where the calls generated, and the timings of the calls. Details of captured data are seen within AWS CloudTrail Record Contents.
AC-2(g) The organization: g. Monitors the use of information system accounts.

cloudtrail-s3-dataevents-enabled

The collection of Simple Storage Service (Amazon S3) data events helps in detecting any anomalous activity. The details include AWS account information that accessed an Amazon S3 bucket, IP address, and time of event.
AC-2(g) The organization: g. Monitors the use of information system accounts.

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
AC-2(g) The organization: g. Monitors the use of information system accounts.

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
AC-2(g) The organization: g. Monitors the use of information system accounts.

rds-logging-enabled

To help with logging and monitoring within your environment, ensure Amazon Relational Database Service (Amazon RDS) logging is enabled. With Amazon RDS logging, you can capture events such as connections, disconnections, queries, or tables queried.
AC-2(g) The organization: g. Monitors the use of information system accounts.

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
AC-2(j) The organization: j. Reviews accounts for compliance with account management requirements [Assignment: organization-defined frequency].

root-account-mfa-enabled

Manage access to resources in the AWS Cloud by ensuring MFA is enabled for the root user. The root user is the most privileged user in an AWS account. The MFA adds an extra layer of protection for a user name and password. By requiring MFA for the root user, you can reduce the incidents of compromised AWS accounts.
AC-2(j) The organization: j. Reviews accounts for compliance with account management requirements [Assignment: organization-defined frequency].

secretsmanager-scheduled-rotation-success-check

This rule ensures that AWS Secrets Manager secrets have rotated successfully according to the rotation schedule. Rotating secrets on a regular schedule can shorten the period that a secret is active, and potentially reduce the business impact if it is compromised.
AC-2(j) The organization: j. Reviews accounts for compliance with account management requirements [Assignment: organization-defined frequency].

iam-user-group-membership-check

AWS Identity and Access Management (IAM) can help you restrict access permissions and authorizations, by ensuring IAM users are members of at least one group. Allowing users more privileges than needed to complete a task may violate the principle of least privilege and separation of duties.
AC-2(j) The organization: j. Reviews accounts for compliance with account management requirements [Assignment: organization-defined frequency].

iam-password-policy

The identities and the credentials are issued, managed, and verified based on an organizational IAM password policy. They meet or exceed requirements as stated by NIST SP 800-63 and the Centers for Internet Security (CIS) AWS Foundations Benchmark for password strength. This rule allows you to optionally set RequireUppercaseCharacters (AWS Foundational Security Best Practices value: true), RequireLowercaseCharacters (AWS Foundational Security Best Practices value: true), RequireSymbols (AWS Foundational Security Best Practices value: true), RequireNumbers (AWS Foundational Security Best Practices value: true), MinimumPasswordLength (AWS Foundational Security Best Practices value: 14), PasswordReusePrevention (FedRAMP Parameter: 24), and MaxPasswordAge (AWS Foundational Security Best Practices value: 90) for your IAM Password Policy. The actual values should reflect your organization's policies.
AC-2(j) The organization: j. Reviews accounts for compliance with account management requirements [Assignment: organization-defined frequency].

access-keys-rotated

The credentials are audited for authorized devices, users, and processes by ensuring IAM access keys are rotated as per organizational policy. Changing the access keys on a regular schedule is a security best practice. It shortens the period an access key is active and reduces the business impact if the keys are compromised. This rule requires an access key rotation value (Config Default: 90). The actual value should reflect your organization's policies.
AC-2(j) The organization: j. Reviews accounts for compliance with account management requirements [Assignment: organization-defined frequency].

iam-root-access-key-check

Access to systems and assets can be controlled by checking that the root user does not have access keys attached to their AWS Identity and Access Management (IAM) role. Ensure that the root access keys are deleted. Instead, create and use role-based AWS accounts to help to incorporate the principle of least functionality.
AC-2(j) The organization: j. Reviews accounts for compliance with account management requirements [Assignment: organization-defined frequency].

emr-kerberos-enabled

The access permissions and authorizations can be managed and incorporated with the principles of least privilege and separation of duties, by enabling Kerberos for Amazon EMR clusters. In Kerberos, the services and the users that need to authenticate are known as principals. The principals exist within a Kerberos realm. Within the realm, a Kerberos server is known as the key distribution center (KDC). It provides a means for the principals to authenticate. The KDC authenticates by issuing tickets for authentication. The KDC maintains a database of the principals within its realm, their passwords, and other administrative information about each principal.
AC-2(j) The organization: j. Reviews accounts for compliance with account management requirements [Assignment: organization-defined frequency].

iam-group-has-users-check

AWS Identity and Access Management (IAM) can help you incorporate the principles of least privilege and separation of duties with access permissions and authorizations, by ensuring that IAM groups have at least one IAM user. Placing IAM users in groups based on their associated permissions or job function is one way to incorporate least privilege.
AC-2(j) The organization: j. Reviews accounts for compliance with account management requirements [Assignment: organization-defined frequency].

iam-policy-no-statements-with-admin-access

AWS Identity and Access Management (IAM) can help you incorporate the principles of least privilege and separation of duties with access permissions and authorizations, restricting policies from containing "Effect": "Allow" with "Action": "*" over "Resource": "*". Allowing users to have more privileges than needed to complete a task may violate the principle of least privilege and separation of duties.
AC-2(j) The organization: j. Reviews accounts for compliance with account management requirements [Assignment: organization-defined frequency].

iam-user-no-policies-check

This rule ensures AWS Identity and Access Management (IAM) policies are attached only to groups or roles to control access to systems and assets. Assigning privileges at the group or the role level helps to reduce opportunity for an identity to receive or retain excessive privileges.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

s3-bucket-public-write-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

iam-user-no-policies-check

This rule ensures AWS Identity and Access Management (IAM) policies are attached only to groups or roles to control access to systems and assets. Assigning privileges at the group or the role level helps to reduce opportunity for an identity to receive or retain excessive privileges.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

iam-user-unused-credentials-check

AWS Identity and Access Management (IAM) can help you with access permissions and authorizations by checking for IAM passwords and access keys that are not used for a specified time period. If these unused credentials are identified, you should disable and/or remove the credentials, as this may violate the principle of least privilege. This rule requires you to set a value to the maxCredentialUsageAge (Config Default: 90). The actual value should reflect your organization's policies.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

lambda-function-public-access-prohibited

Manage access to resources in the AWS Cloud by ensuring AWS Lambda functions cannot be publicly accessed. Public access can potentially lead to degradation of availability of resources.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

rds-snapshots-public-prohibited

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information and principles and access control is required for such accounts.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

redshift-cluster-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Redshift clusters are not public. Amazon Redshift clusters can contain sensitive information and principles and access control is required for such accounts.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

s3-bucket-policy-grantee-check

Manage access to the AWS Cloud by enabling s3_ bucket_policy_grantee_check. This rule checks that the access granted by the Amazon S3 bucket is restricted by any of the AWS principals, federated users, service principals, IP addresses, or Amazon Virtual Private Cloud (Amazon VPC) IDs that you provide.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

iam-user-group-membership-check

AWS Identity and Access Management (IAM) can help you restrict access permissions and authorizations, by ensuring IAM users are members of at least one group. Allowing users more privileges than needed to complete a task may violate the principle of least privilege and separation of duties.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

s3-bucket-public-read-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

s3-account-level-public-access-blocks

Manage access to resources in the AWS Cloud by ensuring that Amazon Simple Storage Service (Amazon S3) buckets cannot be publicly accessed. This rule helps keeping sensitive data safe from unauthorized remote users by preventing public access. This rule allows you to optionally set the ignorePublicAcls (Config Default: True), blockPublicPolicy (Config Default: True), blockPublicAcls (Config Default: True), and restrictPublicBuckets parameters (Config Default: True). The actual values should reflect your organization's policies.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

iam-root-access-key-check

Access to systems and assets can be controlled by checking that the root user does not have access keys attached to their AWS Identity and Access Management (IAM) role. Ensure that the root access keys are deleted. Instead, create and use role-based AWS accounts to help to incorporate the principle of least functionality.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

dms-replication-not-public

Manage access to the AWS Cloud by ensuring DMS replication instances cannot be publicly accessed. DMS replication instances can contain sensitive information and access control is required for such accounts.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

ebs-snapshot-public-restorable-check

Manage access to the AWS Cloud by ensuring EBS snapshots are not publicly restorable. EBS volume snapshots can contain sensitive information and access control is required for such accounts.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

emr-kerberos-enabled

The access permissions and authorizations can be managed and incorporated with the principles of least privilege and separation of duties, by enabling Kerberos for Amazon EMR clusters. In Kerberos, the services and the users that need to authenticate are known as principals. The principals exist within a Kerberos realm. Within the realm, a Kerberos server is known as the key distribution center (KDC). It provides a means for the principals to authenticate. The KDC authenticates by issuing tickets for authentication. The KDC maintains a database of the principals within its realm, their passwords, and other administrative information about each principal.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

iam-group-has-users-check

AWS Identity and Access Management (IAM) can help you incorporate the principles of least privilege and separation of duties with access permissions and authorizations, by ensuring that IAM groups have at least one IAM user. Placing IAM users in groups based on their associated permissions or job function is one way to incorporate least privilege.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

iam-policy-no-statements-with-admin-access

AWS Identity and Access Management (IAM) can help you incorporate the principles of least privilege and separation of duties with access permissions and authorizations, restricting policies from containing "Effect": "Allow" with "Action": "*" over "Resource": "*". Allowing users to have more privileges than needed to complete a task may violate the principle of least privilege and separation of duties.
AC-3 The information system enforces approved authorizations for logical access to information and system resources in accordance with applicable access control policies.

sagemaker-notebook-no-direct-internet-access

Manage access to resources in the AWS Cloud by ensuring that Amazon SageMaker notebooks do not allow direct internet access. By preventing direct internet access, you can keep sensitive data from being accessed by unauthorized users.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

lambda-function-public-access-prohibited

Manage access to resources in the AWS Cloud by ensuring AWS Lambda functions cannot be publicly accessed. Public access can potentially lead to degradation of availability of resources.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

redshift-cluster-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Redshift clusters are not public. Amazon Redshift clusters can contain sensitive information and principles and access control is required for such accounts.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

rds-snapshots-public-prohibited

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information and principles and access control is required for such accounts.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

rds-instance-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information, and principles and access control is required for such accounts.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

lambda-inside-vpc

Deploy AWS Lambda functions within an Amazon Virtual Private Cloud (Amazon VPC) for a secure communication between a function and other services within the Amazon VPC. With this configuration, there is no requirement for an internet gateway, NAT device, or VPN connection. All the traffic remains securely within the AWS Cloud. Because of their logical isolation, domains that reside within an Amazon VPC have an extra layer of security when compared to domains that use public endpoints. To properly manage access, AWS Lambda functions should be assigned to a VPC.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

ec2-instances-in-vpc

Deploy Amazon Elastic Compute Cloud (Amazon EC2) instances within an Amazon Virtual Private Cloud (Amazon VPC) to enable secure communication between an instance and other services within the amazon VPC, without requiring an internet gateway, NAT device, or VPN connection. All traffic remains securely within the AWS Cloud. Because of their logical isolation, domains that reside within anAmazon VPC have an extra layer of security when compared to domains that use public endpoints. Assign Amazon EC2 instances to an Amazon VPC to properly manage access.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

restricted-common-ports

Manage access to resources in the AWS Cloud by ensuring common ports are restricted on Amazon Elastic Compute Cloud (Amazon EC2) security groups. Not restricting access to ports to trusted sources can lead to attacks against the availability, integrity and confidentiality of systems. This rule allows you to optionally set blockedPort1 - blockedPort5 parameters (Config Defaults: 20,21,3389,3306,4333). The actual values should reflect your organization's policies.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

restricted-ssh

Amazon Elastic Compute Cloud (Amazon EC2) Security Groups can help manage network access by providing stateful filtering of ingress and egress network traffic to AWS resources. Not allowing ingress (or remote) traffic from 0.0.0.0/0 to port 22 on your resources help you restricting remote access.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

s3-account-level-public-access-blocks

Manage access to resources in the AWS Cloud by ensuring that Amazon Simple Storage Service (Amazon S3) buckets cannot be publicly accessed. This rule helps keeping sensitive data safe from unauthorized remote users by preventing public access. This rule allows you to optionally set the ignorePublicAcls (Config Default: True), blockPublicPolicy (Config Default: True), blockPublicAcls (Config Default: True), and restrictPublicBuckets parameters (Config Default: True). The actual values should reflect your organization's policies.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

s3-bucket-public-read-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

sagemaker-notebook-no-direct-internet-access

Manage access to resources in the AWS Cloud by ensuring that Amazon SageMaker notebooks do not allow direct internet access. By preventing direct internet access, you can keep sensitive data from being accessed by unauthorized users.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

vpc-default-security-group-closed

Amazon Elastic Compute Cloud (Amazon EC2) security groups can help in the management of network access by providing stateful filtering of ingress and egress network traffic to AWS resources. Restricting all the traffic on the default security group helps in restricting remote access to your AWS resources.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

vpc-sg-open-only-to-authorized-ports

Manage access to resources in the AWS Cloud by ensuring common ports are restricted on Amazon Elastic Compute Cloud (Amazon EC2) Security Groups. Not restricting access on ports to trusted sources can lead to attacks against the availability, integrity and confidentiality of systems. By restricting access to resources within a security group from the internet (0.0.0.0/0) remote access can be controlled to internal systems.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

s3-bucket-public-write-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

acm-certificate-expiration-check

Ensure network integrity is protected by ensuring X509 certificates are issued by AWS ACM. These certificates must be valid and unexpired. This rule requires a value for daysToExpiration (AWS Foundational Security Best Practices value: 90). The actual value should reflect your organization's policies.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

ec2-instance-no-public-ip

Manage access to the AWS Cloud by ensuring Amazon Elastic Compute Cloud (Amazon EC2) instances cannot be publicly accessed. Amazon EC2 instances can contain sensitive information and access control is required for such accounts.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

elasticsearch-in-vpc-only

Manage access to the AWS Cloud by ensuring Amazon Elasticsearch Service (Amazon ES) Domains are within an Amazon Virtual Private Cloud (Amazon VPC). An Amazon ES domain within an Amazon VPC enables secure communication between Amazon ES and other services within the Amazon VPC without the need for an internet gateway, NAT device, or VPN connection.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

dms-replication-not-public

Manage access to the AWS Cloud by ensuring DMS replication instances cannot be publicly accessed. DMS replication instances can contain sensitive information and access control is required for such accounts.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

ebs-snapshot-public-restorable-check

Manage access to the AWS Cloud by ensuring EBS snapshots are not publicly restorable. EBS volume snapshots can contain sensitive information and access control is required for such accounts.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

emr-master-no-public-ip

Manage access to the AWS Cloud by ensuring Amazon EMR cluster master nodes cannot be publicly accessed. Amazon EMR cluster master nodes can contain sensitive information and access control is required for such accounts.
AC-4 The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].

internet-gateway-authorized-vpc-only

Manage access to resources in the AWS Cloud by ensuring that internet gateways are only attached to authorized Amazon Virtual Private Cloud (Amazon VPC). Internet gateways allow bi-directional internet access to and from the Amazon VPC that can potentially lead to unauthorized access to Amazon VPC resources.
AC-5c The organization: c. Defines information system access authorizations to support separation of duties.

emr-kerberos-enabled

The access permissions and authorizations can be managed and incorporated with the principles of least privilege and separation of duties, by enabling Kerberos for Amazon EMR clusters. In Kerberos, the services and the users that need to authenticate are known as principals. The principals exist within a Kerberos realm. Within the realm, a Kerberos server is known as the key distribution center (KDC). It provides a means for the principals to authenticate. The KDC authenticates by issuing tickets for authentication. The KDC maintains a database of the principals within its realm, their passwords, and other administrative information about each principal.
AC-5c The organization: c. Defines information system access authorizations to support separation of duties.

iam-group-has-users-check

AWS Identity and Access Management (IAM) can help you incorporate the principles of least privilege and separation of duties with access permissions and authorizations, by ensuring that IAM groups have at least one IAM user. Placing IAM users in groups based on their associated permissions or job function is one way to incorporate least privilege.
AC-5c The organization: c. Defines information system access authorizations to support separation of duties.

iam-policy-no-statements-with-admin-access

AWS Identity and Access Management (IAM) can help you incorporate the principles of least privilege and separation of duties with access permissions and authorizations, restricting policies from containing "Effect": "Allow" with "Action": "*" over "Resource": "*". Allowing users to have more privileges than needed to complete a task may violate the principle of least privilege and separation of duties.
AC-5c The organization: c. Defines information system access authorizations to support separation of duties.

iam-user-no-policies-check

This rule ensures AWS Identity and Access Management (IAM) policies are attached only to groups or roles to control access to systems and assets. Assigning privileges at the group or the role level helps to reduce opportunity for an identity to receive or retain excessive privileges.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

rds-snapshots-public-prohibited

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information and principles and access control is required for such accounts.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

redshift-cluster-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Redshift clusters are not public. Amazon Redshift clusters can contain sensitive information and principles and access control is required for such accounts.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

s3-account-level-public-access-blocks

Manage access to resources in the AWS Cloud by ensuring that Amazon Simple Storage Service (Amazon S3) buckets cannot be publicly accessed. This rule helps keeping sensitive data safe from unauthorized remote users by preventing public access. This rule allows you to optionally set the ignorePublicAcls (Config Default: True), blockPublicPolicy (Config Default: True), blockPublicAcls (Config Default: True), and restrictPublicBuckets parameters (Config Default: True). The actual values should reflect your organization's policies.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

s3-bucket-policy-grantee-check

Manage access to the AWS Cloud by enabling s3_ bucket_policy_grantee_check. This rule checks that the access granted by the Amazon S3 bucket is restricted by any of the AWS principals, federated users, service principals, IP addresses, or Amazon Virtual Private Cloud (Amazon VPC) IDs that you provide.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

s3-bucket-public-read-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

s3-bucket-public-write-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

sagemaker-notebook-no-direct-internet-access

Manage access to resources in the AWS Cloud by ensuring that Amazon SageMaker notebooks do not allow direct internet access. By preventing direct internet access, you can keep sensitive data from being accessed by unauthorized users.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

lambda-function-public-access-prohibited

Manage access to resources in the AWS Cloud by ensuring AWS Lambda functions cannot be publicly accessed. Public access can potentially lead to degradation of availability of resources.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

codebuild-project-envvar-awscred-check

Ensure authentication credentials AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY do not exist within AWS Codebuild project environments. Do not store these variables in clear text. Storing these variables in clear text leads to unintended data exposure and unauthorized access.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

ebs-snapshot-public-restorable-check

Manage access to the AWS Cloud by ensuring EBS snapshots are not publicly restorable. EBS volume snapshots can contain sensitive information and access control is required for such accounts.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

iam-user-unused-credentials-check

AWS Identity and Access Management (IAM) can help you with access permissions and authorizations by checking for IAM passwords and access keys that are not used for a specified time period. If these unused credentials are identified, you should disable and/or remove the credentials, as this may violate the principle of least privilege. This rule requires you to set a value to the maxCredentialUsageAge (Config Default: 90). The actual value should reflect your organization's policies.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

emr-kerberos-enabled

The access permissions and authorizations can be managed and incorporated with the principles of least privilege and separation of duties, by enabling Kerberos for Amazon EMR clusters. In Kerberos, the services and the users that need to authenticate are known as principals. The principals exist within a Kerberos realm. Within the realm, a Kerberos server is known as the key distribution center (KDC). It provides a means for the principals to authenticate. The KDC authenticates by issuing tickets for authentication. The KDC maintains a database of the principals within its realm, their passwords, and other administrative information about each principal.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

iam-group-has-users-check

AWS Identity and Access Management (IAM) can help you incorporate the principles of least privilege and separation of duties with access permissions and authorizations, by ensuring that IAM groups have at least one IAM user. Placing IAM users in groups based on their associated permissions or job function is one way to incorporate least privilege.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

iam-policy-no-statements-with-admin-access

AWS Identity and Access Management (IAM) can help you incorporate the principles of least privilege and separation of duties with access permissions and authorizations, restricting policies from containing "Effect": "Allow" with "Action": "*" over "Resource": "*". Allowing users to have more privileges than needed to complete a task may violate the principle of least privilege and separation of duties.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

iam-root-access-key-check

Access to systems and assets can be controlled by checking that the root user does not have access keys attached to their AWS Identity and Access Management (IAM) role. Ensure that the root access keys are deleted. Instead, create and use role-based AWS accounts to help to incorporate the principle of least functionality.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

iam-user-group-membership-check

AWS Identity and Access Management (IAM) can help you restrict access permissions and authorizations, by ensuring IAM users are members of at least one group. Allowing users more privileges than needed to complete a task may violate the principle of least privilege and separation of duties.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

iam-user-no-policies-check

This rule ensures AWS Identity and Access Management (IAM) policies are attached only to groups or roles to control access to systems and assets. Assigning privileges at the group or the role level helps to reduce opportunity for an identity to receive or retain excessive privileges.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

dms-replication-not-public

Manage access to the AWS Cloud by ensuring DMS replication instances cannot be publicly accessed. DMS replication instances can contain sensitive information and access control is required for such accounts.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

rds-instance-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information, and principles and access control is required for such accounts.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

ec2-instance-no-public-ip

Manage access to the AWS Cloud by ensuring Amazon Elastic Compute Cloud (Amazon EC2) instances cannot be publicly accessed. Amazon EC2 instances can contain sensitive information and access control is required for such accounts.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

ec2-imdsv2-check

Ensure the Instance Metadata Service Version 2 (IMDSv2) method is enabled to help protect access and control of Amazon Elastic Compute Cloud (Amazon EC2) instance metadata. The IMDSv2 method uses session-based controls. With IMDSv2, controls can be implemented to restrict changes to instance metadata.
AC-6 The organization employs the principle of least privilege, allowing only authorized accesses for users (or processes acting on behalf of users) which are necessary to accomplish assigned tasks in accordance with organizational missions and business functions.

iam-no-inline-policy-check

Ensure an AWS Identity and Access Management (IAM) user, IAM role or IAM group does not have an inline policy to control access to systems and assets. AWS recommends to use managed policies instead of inline policies. The managed policies allow reusability, versioning and rolling back, and delegating permissions management.
AC-6(10) The information system prevents non-privileged users from executing privileged functions to include disabling, circumventing, or altering implemented security safeguards/countermeasures.

iam-root-access-key-check

Access to systems and assets can be controlled by checking that the root user does not have access keys attached to their AWS Identity and Access Management (IAM) role. Ensure that the root access keys are deleted. Instead, create and use role-based AWS accounts to help to incorporate the principle of least functionality.
AC-17(1) The information system monitors and controls remote access methods.

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
AC-17(1) The information system monitors and controls remote access methods.

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
AC-17(2) The information system implements cryptographic mechanisms to protect the confidentiality and integrity of remote access sessions.

alb-http-to-https-redirection-check

To help protect data in transit, ensure that your Application Load Balancer automatically redirects unencrypted HTTP requests to HTTPS. Because sensitive data can exist, enable encryption in transit to help protect that data.
AC-17(2) The information system implements cryptographic mechanisms to protect the confidentiality and integrity of remote access sessions.

redshift-require-tls-ssl

Ensure that your Amazon Redshift clusters require TLS/SSL encryption to connect to SQL clients. Because sensitive data can exist, enable encryption in transit to help protect that data.
AC-17(2) The information system implements cryptographic mechanisms to protect the confidentiality and integrity of remote access sessions.

acm-certificate-expiration-check

Ensure network integrity is protected by ensuring X509 certificates are issued by AWS ACM. These certificates must be valid and unexpired. This rule requires a value for daysToExpiration (AWS Foundational Security Best Practices value: 90). The actual value should reflect your organization's policies.
AC-17(2) The information system implements cryptographic mechanisms to protect the confidentiality and integrity of remote access sessions.

s3-bucket-ssl-requests-only

To help protect data in transit, ensure that your Amazon Simple Storage Service (Amazon S3) buckets require requests to use Secure Socket Layer (SSL). Because sensitive data can exist, enable encryption in transit to help protect that data.
AC-17(2) The information system implements cryptographic mechanisms to protect the confidentiality and integrity of remote access sessions.

elb-acm-certificate-required

Because sensitive data can exist and to help protect data at transit, ensure encryption is enabled for your Elastic Load Balancing. Use AWS Certificate Manager to manage, provision and deploy public and private SSL/TLS certificates with AWS services and internal resources.
AC-17(2) The information system implements cryptographic mechanisms to protect the confidentiality and integrity of remote access sessions.

alb-http-drop-invalid-header-enabled

Ensure that your Elastic Load Balancers (ELB) are configured to drop http headers. Because sensitive data can exist, enable encryption in transit to help protect that data.
AC-17(2) The information system implements cryptographic mechanisms to protect the confidentiality and integrity of remote access sessions.

elb-tls-https-listeners-only

Ensure that your Elastic Load Balancers (ELBs) are configured with SSL or HTTPS listeners. Because sensitive data can exist, enable encryption in transit to help protect that data.
AC-17(3) The information system routes all remote accesses through [Assignment: organization-defined number] managed network access control points.

internet-gateway-authorized-vpc-only

Manage access to resources in the AWS Cloud by ensuring that internet gateways are only attached to authorized Amazon Virtual Private Cloud (Amazon VPC). Internet gateways allow bi-directional internet access to and from the Amazon VPC that can potentially lead to unauthorized access to Amazon VPC resources.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

sagemaker-notebook-no-direct-internet-access

Manage access to resources in the AWS Cloud by ensuring that Amazon SageMaker notebooks do not allow direct internet access. By preventing direct internet access, you can keep sensitive data from being accessed by unauthorized users.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

dms-replication-not-public

Manage access to the AWS Cloud by ensuring DMS replication instances cannot be publicly accessed. DMS replication instances can contain sensitive information and access control is required for such accounts.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

ebs-snapshot-public-restorable-check

Manage access to the AWS Cloud by ensuring EBS snapshots are not publicly restorable. EBS volume snapshots can contain sensitive information and access control is required for such accounts.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

ec2-instance-no-public-ip

Manage access to the AWS Cloud by ensuring Amazon Elastic Compute Cloud (Amazon EC2) instances cannot be publicly accessed. Amazon EC2 instances can contain sensitive information and access control is required for such accounts.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

emr-master-no-public-ip

Manage access to the AWS Cloud by ensuring Amazon EMR cluster master nodes cannot be publicly accessed. Amazon EMR cluster master nodes can contain sensitive information and access control is required for such accounts.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

lambda-function-public-access-prohibited

Manage access to resources in the AWS Cloud by ensuring AWS Lambda functions cannot be publicly accessed. Public access can potentially lead to degradation of availability of resources.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

rds-instance-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information, and principles and access control is required for such accounts.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

rds-snapshots-public-prohibited

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information and principles and access control is required for such accounts.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

redshift-cluster-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Redshift clusters are not public. Amazon Redshift clusters can contain sensitive information and principles and access control is required for such accounts.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

s3-account-level-public-access-blocks

Manage access to resources in the AWS Cloud by ensuring that Amazon Simple Storage Service (Amazon S3) buckets cannot be publicly accessed. This rule helps keeping sensitive data safe from unauthorized remote users by preventing public access. This rule allows you to optionally set the ignorePublicAcls (Config Default: True), blockPublicPolicy (Config Default: True), blockPublicAcls (Config Default: True), and restrictPublicBuckets parameters (Config Default: True). The actual values should reflect your organization's policies.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

s3-bucket-public-read-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
AC-21(b) The organization: b. Employs [Assignment: organization-defined automated mechanisms or manual processes] to assist users in making information sharing/collaboration decisions.

s3-bucket-public-write-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

api-gw-execution-logging-enabled

API Gateway logging displays detailed views of users who accessed the API and the way they accessed the API. This insight enables visibility of user activities.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

cloudtrail-s3-dataevents-enabled

The collection of Simple Storage Service (Amazon S3) data events helps in detecting any anomalous activity. The details include AWS account information that accessed an Amazon S3 bucket, IP address, and time of event.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

cloudtrail-enabled

AWS CloudTrail can help in non-repudiation by recording AWS Management Console actions and API calls. You can identify the users and AWS accounts that called an AWS service, the source IP address where the calls generated, and the timings of the calls. Details of captured data are seen within AWS CloudTrail Record Contents.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

elb-logging-enabled

Elastic Load Balancing activity is a central point of communication within an environment. Ensure ELB logging is enabled. The collected data provides detailed information about requests sent to the ELB. Each log contains information such as the time the request was received, the client's IP address, latencies, request paths, and server responses.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

multi-region-cloudtrail-enabled

AWS CloudTrail records AWS Management Console actions and API calls. You can identify which users and accounts called AWS, the source IP address from where the calls were made, and when the calls occurred. CloudTrail will deliver log files from all AWS Regions to your S3 bucket if MULTI_REGION_CLOUD_TRAIL_ENABLED is enabled. Additionally, when AWS launches a new Region, CloudTrail will create the same trail in the new Region. As a result, you will receive log files containing API activity for the new Region without taking any action.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

s3-bucket-logging-enabled

Amazon Simple Storage Service (Amazon S3) server access logging provides a method to monitor the network for potential cybersecurity events. The events are monitored by capturing detailed records for the requests that are made to an Amazon S3 bucket. Each access log record provides details about a single access request. The details include the requester, bucket name, request time, request action, response status, and an error code, if relevant.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

vpc-flow-logs-enabled

The VPC flow logs provide detailed records for information about the IP traffic going to and from network interfaces in your Amazon Virtual Private Cloud (Amazon VPC). By default, the flow log record includes values for the different components of the IP flow, including the source, destination, and protocol.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

rds-logging-enabled

To help with logging and monitoring within your environment, ensure Amazon Relational Database Service (Amazon RDS) logging is enabled. With Amazon RDS logging, you can capture events such as connections, disconnections, queries, or tables queried.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

wafv2-logging-enabled

To help with logging and monitoring within your environment, enable AWS WAF (V2) logging on regional and global web ACLs. AWS WAF logging provides detailed information about the traffic that is analyzed by your web ACL. The logs record the time that AWS WAF received the request from your AWS resource, information about the request, and an action for the rule that each request matched.
AU-2(a)(d) The organization: a. Determines that the information system is capable of auditing the following events: Successful and unsuccessful account logon events, account management events, object access, policy change, privilege functions, process tracking, and system events. For Web applications: all administrator activity, authentication checks, authorization checks, data deletions, data access, data changes, and permission changes. d. Determines that the following events are to be audited within the information system: [organization-defined subset of the auditable events defined in AU-2 a to be audited continually for each identified event].

redshift-cluster-configuration-check

To protect data at rest, ensure that encryption is enabled for your Amazon Redshift clusters. You must also ensure that required configurations are deployed on Amazon Redshift clusters. The audit logging should be enabled to provide information about connections and user activities in the database. This rule requires that a value is set for clusterDbEncrypted (Config Default : TRUE), and loggingEnabled (Config Default: TRUE). The actual values should reflect your organization's policies.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

api-gw-execution-logging-enabled

API Gateway logging displays detailed views of users who accessed the API and the way they accessed the API. This insight enables visibility of user activities.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

cloudtrail-s3-dataevents-enabled

The collection of Simple Storage Service (Amazon S3) data events helps in detecting any anomalous activity. The details include AWS account information that accessed an Amazon S3 bucket, IP address, and time of event.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

rds-logging-enabled

To help with logging and monitoring within your environment, ensure Amazon Relational Database Service (Amazon RDS) logging is enabled. With Amazon RDS logging, you can capture events such as connections, disconnections, queries, or tables queried.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

cloudtrail-enabled

AWS CloudTrail can help in non-repudiation by recording AWS Management Console actions and API calls. You can identify the users and AWS accounts that called an AWS service, the source IP address where the calls generated, and the timings of the calls. Details of captured data are seen within AWS CloudTrail Record Contents.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

elb-logging-enabled

Elastic Load Balancing activity is a central point of communication within an environment. Ensure ELB logging is enabled. The collected data provides detailed information about requests sent to the ELB. Each log contains information such as the time the request was received, the client's IP address, latencies, request paths, and server responses.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

multi-region-cloudtrail-enabled

AWS CloudTrail records AWS Management Console actions and API calls. You can identify which users and accounts called AWS, the source IP address from where the calls were made, and when the calls occurred. CloudTrail will deliver log files from all AWS Regions to your S3 bucket if MULTI_REGION_CLOUD_TRAIL_ENABLED is enabled. Additionally, when AWS launches a new Region, CloudTrail will create the same trail in the new Region. As a result, you will receive log files containing API activity for the new Region without taking any action.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

s3-bucket-logging-enabled

Amazon Simple Storage Service (Amazon S3) server access logging provides a method to monitor the network for potential cybersecurity events. The events are monitored by capturing detailed records for the requests that are made to an Amazon S3 bucket. Each access log record provides details about a single access request. The details include the requester, bucket name, request time, request action, response status, and an error code, if relevant.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

vpc-flow-logs-enabled

The VPC flow logs provide detailed records for information about the IP traffic going to and from network interfaces in your Amazon Virtual Private Cloud (Amazon VPC). By default, the flow log record includes values for the different components of the IP flow, including the source, destination, and protocol.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

redshift-cluster-configuration-check

To protect data at rest, ensure that encryption is enabled for your Amazon Redshift clusters. You must also ensure that required configurations are deployed on Amazon Redshift clusters. The audit logging should be enabled to provide information about connections and user activities in the database. This rule requires that a value is set for clusterDbEncrypted (Config Default : TRUE), and loggingEnabled (Config Default: TRUE). The actual values should reflect your organization's policies.
AU-3 The information system generates audit records containing information that establishes what type of event occurred, when the event occurred, where the event occurred, the source of the event, the outcome of the event, and the identity of any individuals or subjects associated with the event.

wafv2-logging-enabled

To help with logging and monitoring within your environment, enable AWS WAF (V2) logging on regional and global web ACLs. AWS WAF logging provides detailed information about the traffic that is analyzed by your web ACL. The logs record the time that AWS WAF received the request from your AWS resource, information about the request, and an action for the rule that each request matched.
AU-6(1)(3) (1) The organization employs automated mechanisms to integrate audit review, analysis, and reporting processes to support organizational processes for investigation and response to suspicious activities. (3) The organization analyzes and correlates audit records across different repositories to gain organization-wide situational awareness.

cloudwatch-alarm-action-check

Amazon CloudWatch alarms alert when a metric breaches the threshold for a specified number of evaluation periods. The alarm performs one or more actions based on the value of the metric or expression relative to a threshold over a number of time periods. This rule requires a value for alarmActionRequired (Config Default: True), insufficientDataActionRequired (Config Default: True), okActionRequired (Config Default: False). The actual value should reflect the alarm actions for your environment.
AU-6(1)(3) (1) The organization employs automated mechanisms to integrate audit review, analysis, and reporting processes to support organizational processes for investigation and response to suspicious activities. (3) The organization analyzes and correlates audit records across different repositories to gain organization-wide situational awareness.

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
AU-6(1)(3) (1) The organization employs automated mechanisms to integrate audit review, analysis, and reporting processes to support organizational processes for investigation and response to suspicious activities. (3) The organization analyzes and correlates audit records across different repositories to gain organization-wide situational awareness.

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
AU-6(1)(3) (1) The organization employs automated mechanisms to integrate audit review, analysis, and reporting processes to support organizational processes for investigation and response to suspicious activities. (3) The organization analyzes and correlates audit records across different repositories to gain organization-wide situational awareness.

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
AU-7(1) The information system provides the capability to process audit records for events of interest based on [Assignment: organization-defined audit fields within audit records].

cloudwatch-alarm-action-check

Amazon CloudWatch alarms alert when a metric breaches the threshold for a specified number of evaluation periods. The alarm performs one or more actions based on the value of the metric or expression relative to a threshold over a number of time periods. This rule requires a value for alarmActionRequired (Config Default: True), insufficientDataActionRequired (Config Default: True), okActionRequired (Config Default: False). The actual value should reflect the alarm actions for your environment.
AU-7(1) The information system provides the capability to process audit records for events of interest based on [Assignment: organization-defined audit fields within audit records].

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
AU-9 The information system protects audit information and audit tools from unauthorized access, modification, and deletion.

cloud-trail-encryption-enabled

Because sensitive data may exist and to help protect data at rest, ensure encryption is enabled for your AWS CloudTrail trails.
AU-9 The information system protects audit information and audit tools from unauthorized access, modification, and deletion.

cloudwatch-log-group-encrypted

To help protect sensitive data at rest, ensure encryption is enabled for your Amazon CloudWatch Log Groups.
AU-9(2) The information system backs up audit records at least weekly onto a physically different system or system component than the system or component being audited.

s3-bucket-replication-enabled

Amazon Simple Storage Service (Amazon S3) Cross-Region Replication (CRR) supports maintaining adequate capacity and availability. CRR enables automatic, asynchronous copying of objects across Amazon S3 buckets to help ensure that data availability is maintained.
AU-11 The organization retains audit records for at least 90 days to provide support for after-the-fact investigations of security incidents and to meet regulatory and organizational information retention requirements.

cw-loggroup-retention-period-check

Ensure a minimum duration of event log data is retained for your log groups to help with troubleshooting and forensics investigations. The lack of available past event log data makes it difficult to reconstruct and identify potentially malicious events. This rule allows you to optionally set the MinRetentionTime (FedRAMP Parameter: 90), as required by your organization's policies.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

api-gw-execution-logging-enabled

API Gateway logging displays detailed views of users who accessed the API and the way they accessed the API. This insight enables visibility of user activities.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

cloudtrail-s3-dataevents-enabled

The collection of Simple Storage Service (Amazon S3) data events helps in detecting any anomalous activity. The details include AWS account information that accessed an Amazon S3 bucket, IP address, and time of event.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

rds-logging-enabled

To help with logging and monitoring within your environment, ensure Amazon Relational Database Service (Amazon RDS) logging is enabled. With Amazon RDS logging, you can capture events such as connections, disconnections, queries, or tables queried.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

cloudtrail-enabled

AWS CloudTrail can help in non-repudiation by recording AWS Management Console actions and API calls. You can identify the users and AWS accounts that called an AWS service, the source IP address where the calls generated, and the timings of the calls. Details of captured data are seen within AWS CloudTrail Record Contents.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

elb-logging-enabled

Elastic Load Balancing activity is a central point of communication within an environment. Ensure ELB logging is enabled. The collected data provides detailed information about requests sent to the ELB. Each log contains information such as the time the request was received, the client's IP address, latencies, request paths, and server responses.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

multi-region-cloudtrail-enabled

AWS CloudTrail records AWS Management Console actions and API calls. You can identify which users and accounts called AWS, the source IP address from where the calls were made, and when the calls occurred. CloudTrail will deliver log files from all AWS Regions to your S3 bucket if MULTI_REGION_CLOUD_TRAIL_ENABLED is enabled. Additionally, when AWS launches a new Region, CloudTrail will create the same trail in the new Region. As a result, you will receive log files containing API activity for the new Region without taking any action.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

s3-bucket-logging-enabled

Amazon Simple Storage Service (Amazon S3) server access logging provides a method to monitor the network for potential cybersecurity events. The events are monitored by capturing detailed records for the requests that are made to an Amazon S3 bucket. Each access log record provides details about a single access request. The details include the requester, bucket name, request time, request action, response status, and an error code, if relevant.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

vpc-flow-logs-enabled

The VPC flow logs provide detailed records for information about the IP traffic going to and from network interfaces in your Amazon Virtual Private Cloud (Amazon VPC). By default, the flow log record includes values for the different components of the IP flow, including the source, destination, and protocol.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

wafv2-logging-enabled

To help with logging and monitoring within your environment, enable AWS WAF (V2) logging on regional and global web ACLs. AWS WAF logging provides detailed information about the traffic that is analyzed by your web ACL. The logs record the time that AWS WAF received the request from your AWS resource, information about the request, and an action for the rule that each request matched.
AU-12(a)(c) The information system: a. Provides audit record generation capability for the auditable events defined in AU-2 a. at all information system and network components where audit capability is deployed/available c. Generates audit records for the events defined in AU-2 d. with the content defined in AU-3.

redshift-cluster-configuration-check

To protect data at rest, ensure that encryption is enabled for your Amazon Redshift clusters. You must also ensure that required configurations are deployed on Amazon Redshift clusters. The audit logging should be enabled to provide information about connections and user activities in the database. This rule requires that a value is set for clusterDbEncrypted (Config Default : TRUE), and loggingEnabled (Config Default: TRUE). The actual values should reflect your organization's policies.
CA-7(a)(b) The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes: a. Establishment of [Assignment: organization-defined metrics] to be monitored; b. Establishment of [Assignment: organization-defined frequencies] for monitoring and [Assignment: organization-defined frequencies] for assessments supporting such monitoring

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
CA-7(a)(b) The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes: a. Establishment of [Assignment: organization-defined metrics] to be monitored; b. Establishment of [Assignment: organization-defined frequencies] for monitoring and [Assignment: organization-defined frequencies] for assessments supporting such monitoring

cloudwatch-alarm-action-check

Amazon CloudWatch alarms alert when a metric breaches the threshold for a specified number of evaluation periods. The alarm performs one or more actions based on the value of the metric or expression relative to a threshold over a number of time periods. This rule requires a value for alarmActionRequired (Config Default: True), insufficientDataActionRequired (Config Default: True), okActionRequired (Config Default: False). The actual value should reflect the alarm actions for your environment.
CA-7(a)(b) The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes: a. Establishment of [Assignment: organization-defined metrics] to be monitored; b. Establishment of [Assignment: organization-defined frequencies] for monitoring and [Assignment: organization-defined frequencies] for assessments supporting such monitoring

ec2-instance-detailed-monitoring-enabled

Enable this rule to help improve Amazon Elastic Compute Cloud (Amazon EC2) instance monitoring on the Amazon EC2 console, which displays monitoring graphs with a 1-minute period for the instance.
CA-7(a)(b) The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes: a. Establishment of [Assignment: organization-defined metrics] to be monitored; b. Establishment of [Assignment: organization-defined frequencies] for monitoring and [Assignment: organization-defined frequencies] for assessments supporting such monitoring

rds-enhanced-monitoring-enabled

Enable Amazon Relational Database Service (Amazon RDS) to help monitor Amazon RDS availability. This provides detailed visibility into the health of your Amazon RDS database instances. When the Amazon RDS storage is using more than one underlying physical device, Enhanced Monitoring collects the data for each device. Also, when the Amazon RDS database instance is running in a Multi-AZ deployment, the data for each device on the secondary host is collected, and the secondary host metrics.
CA-7(a)(b) The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes: a. Establishment of [Assignment: organization-defined metrics] to be monitored; b. Establishment of [Assignment: organization-defined frequencies] for monitoring and [Assignment: organization-defined frequencies] for assessments supporting such monitoring

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
CA-7(a)(b) The organization develops a continuous monitoring strategy and implements a continuous monitoring program that includes: a. Establishment of [Assignment: organization-defined metrics] to be monitored; b. Establishment of [Assignment: organization-defined frequencies] for monitoring and [Assignment: organization-defined frequencies] for assessments supporting such monitoring

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
CM-2 The organization develops, documents, and maintains under configuration control, a current baseline configuration of the information system.

ec2-instance-managed-by-systems-manager

An inventory of the software platforms and applications within the organization is possible by managing Amazon Elastic Compute Cloud (Amazon EC2) instances with AWS Systems Manager. Use AWS Systems Manager to provide detailed system configurations, operating system patch levels, services name and type, software installations, application name, publisher and version, and other details about your environment.
CM-2 The organization develops, documents, and maintains under configuration control, a current baseline configuration of the information system.

ec2-managedinstance-association-compliance-status-check

Use AWS Systems Manager Associations to help with inventory of software platforms and applications within an organization. AWS Systems Manager assigns a configuration state to your managed instances and allows you to set baselines of operating system patch levels, software installations, application configurations, and other details about your environment.
CM-2 The organization develops, documents, and maintains under configuration control, a current baseline configuration of the information system.

ec2-stopped-instance

Enable this rule to help with the baseline configuration of Amazon Elastic Compute Cloud (Amazon EC2) instances by checking whether Amazon EC2 instances have been stopped for more than the allowed number of days, according to your organization’s standards.
CM-2 The organization develops, documents, and maintains under configuration control, a current baseline configuration of the information system.

ec2-volume-inuse-check

This rule ensures that Amazon Elastic Block Store volumes that are attached to Amazon Elastic Compute Cloud (Amazon EC2) instances are marked for deletion when an instance is terminated. If an Amazon EBS volume isn’t deleted when the instance that it’s attached to is terminated, it may violate the concept of least functionality.
CM-2 The organization develops, documents, and maintains under configuration control, a current baseline configuration of the information system.

elb-deletion-protection-enabled

This rule ensures that Elastic Load Balancing has deletion protection enabled. Use this feature to prevent your load balancer from being accidentally or maliciously deleted, which can lead to loss of availability for your applications.
CM-2 The organization develops, documents, and maintains under configuration control, a current baseline configuration of the information system.

restricted-common-ports

Manage access to resources in the AWS Cloud by ensuring common ports are restricted on Amazon Elastic Compute Cloud (Amazon EC2) security groups. Not restricting access to ports to trusted sources can lead to attacks against the availability, integrity and confidentiality of systems. This rule allows you to optionally set blockedPort1 - blockedPort5 parameters (Config Defaults: 20,21,3389,3306,4333). The actual values should reflect your organization's policies.
CM-2 The organization develops, documents, and maintains under configuration control, a current baseline configuration of the information system.

cloudtrail-security-trail-enabled

This rule helps ensure the use of AWS recommended security best practices for AWS CloudTrail, by checking for the enablement of multiple settings. These include the use of log encryption, log validation, and enabling AWS CloudTrail in multiple regions.
CM-7(a) The organization: a. Configures the information system to provide only essential capabilities.

ec2-instance-managed-by-systems-manager

An inventory of the software platforms and applications within the organization is possible by managing Amazon Elastic Compute Cloud (Amazon EC2) instances with AWS Systems Manager. Use AWS Systems Manager to provide detailed system configurations, operating system patch levels, services name and type, software installations, application name, publisher and version, and other details about your environment.
CM-7(a) The organization: a. Configures the information system to provide only essential capabilities.

ec2-managedinstance-association-compliance-status-check

Use AWS Systems Manager Associations to help with inventory of software platforms and applications within an organization. AWS Systems Manager assigns a configuration state to your managed instances and allows you to set baselines of operating system patch levels, software installations, application configurations, and other details about your environment.
CM-8(1) The organization updates the inventory of information system components as an integral part of component installations, removals, and information system updates.

ec2-instance-managed-by-systems-manager

An inventory of the software platforms and applications within the organization is possible by managing Amazon Elastic Compute Cloud (Amazon EC2) instances with AWS Systems Manager. Use AWS Systems Manager to provide detailed system configurations, operating system patch levels, services name and type, software installations, application name, publisher and version, and other details about your environment.
CM-8(3)(a) The organization: a. Employs automated mechanisms continuously, using automated mechanisms with a maximum five-minute delay in detection, to detect the presence of unauthorized hardware, software, and firmware components within the information system

ec2-instance-managed-by-systems-manager

An inventory of the software platforms and applications within the organization is possible by managing Amazon Elastic Compute Cloud (Amazon EC2) instances with AWS Systems Manager. Use AWS Systems Manager to provide detailed system configurations, operating system patch levels, services name and type, software installations, application name, publisher and version, and other details about your environment.
CM-8(3)(a) The organization: a. Employs automated mechanisms continuously, using automated mechanisms with a maximum five-minute delay in detection, to detect the presence of unauthorized hardware, software, and firmware components within the information system

ec2-managedinstance-association-compliance-status-check

Use AWS Systems Manager Associations to help with inventory of software platforms and applications within an organization. AWS Systems Manager assigns a configuration state to your managed instances and allows you to set baselines of operating system patch levels, software installations, application configurations, and other details about your environment.
CM-8(3)(a) The organization: a. Employs automated mechanisms continuously, using automated mechanisms with a maximum five-minute delay in detection, to detect the presence of unauthorized hardware, software, and firmware components within the information system

ec2-managedinstance-patch-compliance-status-check

Enable this rule to help with identification and documentation of Amazon Elastic Compute Cloud (Amazon EC2) vulnerabilities. The rule checks if Amazon EC2 instance patch compliance in AWS Systems Manager as required by your organization’s policies and procedures.
CP-9(b) The organization: b. Conducts backups of system-level information contained in the information system (daily incremental; weekly full).

db-instance-backup-enabled

The backup feature of Amazon RDS creates backups of your databases and transaction logs. Amazon RDS automatically creates a storage volume snapshot of your DB instance, backing up the entire DB instance. The system allows you to set specific retention periods to meet your resilience requirements.
CP-9(b) The organization: b. Conducts backups of system-level information contained in the information system (daily incremental; weekly full).

dynamodb-pitr-enabled

Enable this rule to check that information has been backed up. It also maintains the backups by ensuring that point-in-time recovery is enabled in Amazon DynamoDB. The recovery maintains continuous backups of your table for the last 35 days.
CP-9(b) The organization: b. Conducts backups of system-level information contained in the information system (daily incremental; weekly full).

elasticache-redis-cluster-automatic-backup-check

When automatic backups are enabled, Amazon ElastiCache creates a backup of the cluster on a daily basis. The backup can be retained for a number of days as specified by your organization. Automatic backups can help guard against data loss. If a failure occurs, you can create a new cluster, which restores your data from the most recent backup.
CP-9(b) The organization: b. Conducts backups of system-level information contained in the information system (daily incremental; weekly full).

s3-bucket-replication-enabled

Amazon Simple Storage Service (Amazon S3) Cross-Region Replication (CRR) supports maintaining adequate capacity and availability. CRR enables automatic, asynchronous copying of objects across Amazon S3 buckets to help ensure that data availability is maintained.
CP-9(b) The organization: b. Conducts backups of system-level information contained in the information system (daily incremental; weekly full).

dynamodb-in-backup-plan

To help with data back-up processes, ensure your Amazon DynamoDB tables are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
CP-9(b) The organization: b. Conducts backups of system-level information contained in the information system (daily incremental; weekly full).

ebs-in-backup-plan

To help with data back-up processes, ensure your Amazon Elastic Block Store (Amazon EBS) volumes are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
CP-9(b) The organization: b. Conducts backups of system-level information contained in the information system (daily incremental; weekly full).

efs-in-backup-plan

To help with data back-up processes, ensure your Amazon Elastic File System (Amazon EFS) file systems are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
CP-9(b) The organization: b. Conducts backups of system-level information contained in the information system (daily incremental; weekly full).

rds-in-backup-plan

To help with data back-up processes, ensure your Amazon Relational Database Service (Amazon RDS) instances are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

dynamodb-autoscaling-enabled

Amazon DynamoDB auto scaling uses the AWS Application Auto Scaling service to adjust provisioned throughput capacity that automatically responds to actual traffic patterns. This enables a table or a global secondary index to increase its provisioned read/write capacity to handle sudden increases in traffic, without throttling.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

rds-multi-az-support

Multi-AZ support in Amazon Relational Database Service (Amazon RDS) provides enhanced availability and durability for database instances. When you provision a Multi-AZ database instance, Amazon RDS automatically creates a primary database instance, and synchronously replicates the data to a standby instance in a different Availability Zone. Each Availability Zone runs on its own physically distinct, independent infrastructure, and is engineered to be highly reliable. In case of an infrastructure failure, Amazon RDS performs an automatic failover to the standby so that you can resume database operations as soon as the failover is complete.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

s3-bucket-versioning-enabled

Amazon Simple Storage Service (Amazon S3) bucket versioning helps keep multiple variants of an object in the same Amazon S3 bucket. Use versioning to preserve, retrieve, and restore every version of every object stored in your Amazon S3 bucket. Versioning helps you to easily recover from unintended user actions and application failures.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

db-instance-backup-enabled

The backup feature of Amazon RDS creates backups of your databases and transaction logs. Amazon RDS automatically creates a storage volume snapshot of your DB instance, backing up the entire DB instance. The system allows you to set specific retention periods to meet your resilience requirements.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

dynamodb-pitr-enabled

Enable this rule to check that information has been backed up. It also maintains the backups by ensuring that point-in-time recovery is enabled in Amazon DynamoDB. The recovery maintains continuous backups of your table for the last 35 days.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

elasticache-redis-cluster-automatic-backup-check

When automatic backups are enabled, Amazon ElastiCache creates a backup of the cluster on a daily basis. The backup can be retained for a number of days as specified by your organization. Automatic backups can help guard against data loss. If a failure occurs, you can create a new cluster, which restores your data from the most recent backup.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

elb-deletion-protection-enabled

This rule ensures that Elastic Load Balancing has deletion protection enabled. Use this feature to prevent your load balancer from being accidentally or maliciously deleted, which can lead to loss of availability for your applications.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

s3-bucket-replication-enabled

Amazon Simple Storage Service (Amazon S3) Cross-Region Replication (CRR) supports maintaining adequate capacity and availability. CRR enables automatic, asynchronous copying of objects across Amazon S3 buckets to help ensure that data availability is maintained.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

vpc-vpn-2-tunnels-up

Redundant Site-to-Site VPN tunnels can be implemented to achieve resilience requirements. It uses two tunnels to help ensure connectivity in case one of the Site-to-Site VPN connections becomes unavailable. To protect against a loss of connectivity, in case your customer gateway becomes unavailable, you can set up a second Site-to-Site VPN connection to your Amazon Virtual Private Cloud (Amazon VPC) and virtual private gateway by using a second customer gateway.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

dynamodb-in-backup-plan

To help with data back-up processes, ensure your Amazon DynamoDB tables are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

ebs-in-backup-plan

To help with data back-up processes, ensure your Amazon Elastic Block Store (Amazon EBS) volumes are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

efs-in-backup-plan

To help with data back-up processes, ensure your Amazon Elastic File System (Amazon EFS) file systems are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

elb-cross-zone-load-balancing-enabled

Enable cross-zone load balancing for your Elastic Load Balancers (ELBs) to help maintain adequate capacity and availability. The cross-zone load balancing reduces the need to maintain equivalent numbers of instances in each enabled availability zone. It also improves your application's ability to handle the loss of one or more instances.
CP-10 The organization provides for the recovery and reconstitution of the information system to a known state after a disruption, compromise, or failure.

rds-in-backup-plan

To help with data back-up processes, ensure your Amazon Relational Database Service (Amazon RDS) instances are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
IA-2 The information system uniquely identifies and authenticates organizational users (or processes acting on behalf of organizational users).

iam-password-policy

The identities and the credentials are issued, managed, and verified based on an organizational IAM password policy. They meet or exceed requirements as stated by NIST SP 800-63 and the Centers for Internet Security (CIS) AWS Foundations Benchmark for password strength. This rule allows you to optionally set RequireUppercaseCharacters (AWS Foundational Security Best Practices value: true), RequireLowercaseCharacters (AWS Foundational Security Best Practices value: true), RequireSymbols (AWS Foundational Security Best Practices value: true), RequireNumbers (AWS Foundational Security Best Practices value: true), MinimumPasswordLength (AWS Foundational Security Best Practices value: 14), PasswordReusePrevention (FedRAMP Parameter: 24), and MaxPasswordAge (AWS Foundational Security Best Practices value: 90) for your IAM Password Policy. The actual values should reflect your organization's policies.
IA-2(1) (1) The information system implements multifactor authentication for network access to privileged accounts.

root-account-hardware-mfa-enabled

Manage access to resources in the AWS Cloud by ensuring hardware MFA is enabled for the root user. The root user is the most privileged user in an AWS account. The MFA adds an extra layer of protection for a user name and password. By requiring MFA for the root user, you can reduce the incidents of compromised AWS accounts.
IA-2(1) (1) The information system implements multifactor authentication for network access to privileged accounts.

root-account-mfa-enabled

Manage access to resources in the AWS Cloud by ensuring MFA is enabled for the root user. The root user is the most privileged user in an AWS account. The MFA adds an extra layer of protection for a user name and password. By requiring MFA for the root user, you can reduce the incidents of compromised AWS accounts.
IA-2(1)(2) (1) The information system implements multifactor authentication for network access to privileged accounts. (2) The information system implements multifactor authentication for network access to non- privileged accounts.

mfa-enabled-for-iam-console-access

Manage access to resources in the AWS Cloud by ensuring that MFA is enabled for all AWS Identity and Access Management (IAM) users that have a console password. MFA adds an extra layer of protection on top of a user name and password. By requiring MFA for IAM users, you can reduce incidents of compromised accounts and keep sensitive data from being accessed by unauthorized users.
IA-2(1)(2) (1) The information system implements multifactor authentication for network access to privileged accounts. (2) The information system implements multifactor authentication for network access to non- privileged accounts.

iam-user-mfa-enabled

Enable this rule to restrict access to resources in the AWS Cloud. This rule ensures multi-factor authentication (MFA) is enabled for all IAM users. MFA adds an extra layer of protection on top of a user name and password. Reduce the incidents of compromised accounts by requiring MFA for IAM users.
IA-5(1)(a)(d)(e) The information system, for password-based authentication: a. Enforces minimum password complexity of [Assignment: organization-defined requirements for case sensitivity, number of characters, mix of upper-case letters, lower-case letters, numbers, and special characters, including minimum requirements for each type]; d. Enforces password minimum and maximum lifetime restrictions of [Assignment: organization- defined numbers for lifetime minimum, lifetime maximum]; e. Prohibits password reuse for 24 generations

iam-password-policy

The identities and the credentials are issued, managed, and verified based on an organizational IAM password policy. They meet or exceed requirements as stated by NIST SP 800-63 and the Centers for Internet Security (CIS) AWS Foundations Benchmark for password strength. This rule allows you to optionally set RequireUppercaseCharacters (AWS Foundational Security Best Practices value: true), RequireLowercaseCharacters (AWS Foundational Security Best Practices value: true), RequireSymbols (AWS Foundational Security Best Practices value: true), RequireNumbers (AWS Foundational Security Best Practices value: true), MinimumPasswordLength (AWS Foundational Security Best Practices value: 14), PasswordReusePrevention (FedRAMP Parameter: 24), and MaxPasswordAge (AWS Foundational Security Best Practices value: 90) for your IAM Password Policy. The actual values should reflect your organization's policies.
IA-5(4) The organization employs automated tools to determine if password authenticators are sufficiently strong to satisfy [Assignment: organization-defined requirements].

iam-password-policy

The identities and the credentials are issued, managed, and verified based on an organizational IAM password policy. They meet or exceed requirements as stated by NIST SP 800-63 and the Centers for Internet Security (CIS) AWS Foundations Benchmark for password strength. This rule allows you to optionally set RequireUppercaseCharacters (AWS Foundational Security Best Practices value: true), RequireLowercaseCharacters (AWS Foundational Security Best Practices value: true), RequireSymbols (AWS Foundational Security Best Practices value: true), RequireNumbers (AWS Foundational Security Best Practices value: true), MinimumPasswordLength (AWS Foundational Security Best Practices value: 14), PasswordReusePrevention (FedRAMP Parameter: 24), and MaxPasswordAge (AWS Foundational Security Best Practices value: 90) for your IAM Password Policy. The actual values should reflect your organization's policies.
IA-5(7) The organization ensures that unencrypted static authenticators are not embedded in applications or access scripts or stored on function keys.

codebuild-project-envvar-awscred-check

Ensure authentication credentials AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY do not exist within AWS Codebuild project environments. Do not store these variables in clear text. Storing these variables in clear text leads to unintended data exposure and unauthorized access.
IR-4(1) The organization employs automated mechanisms to support the incident handling process.

cloudwatch-alarm-action-check

Amazon CloudWatch alarms alert when a metric breaches the threshold for a specified number of evaluation periods. The alarm performs one or more actions based on the value of the metric or expression relative to a threshold over a number of time periods. This rule requires a value for alarmActionRequired (Config Default: True), insufficientDataActionRequired (Config Default: True), okActionRequired (Config Default: False). The actual value should reflect the alarm actions for your environment.
IR-4(1) The organization employs automated mechanisms to support the incident handling process.

guardduty-non-archived-findings

Amazon GuardDuty helps you understand the impact of an incident by classifying findings by severity: low, medium, and high. You can use these classifications for determining remediation strategies and priorities. This rule allows you to optionally set the daysLowSev (FedRAMP Parameter: 180), daysMediumSev (FedRAMP Parameter: 90), and daysHighSev (FedRAMP Parameter: 30) for non-archived findings, as required by your organization's policies.
IR-6(1) The organization employs automated mechanisms to assist in the reporting of security incidents.

guardduty-non-archived-findings

Amazon GuardDuty helps you understand the impact of an incident by classifying findings by severity: low, medium, and high. You can use these classifications for determining remediation strategies and priorities. This rule allows you to optionally set the daysLowSev (FedRAMP Parameter: 180), daysMediumSev (FedRAMP Parameter: 90), and daysHighSev (FedRAMP Parameter: 30) for non-archived findings, as required by your organization's policies.
IR-7(1) The organization employs automated mechanisms to increase the availability of incident response-related information and support.

guardduty-non-archived-findings

Amazon GuardDuty helps you understand the impact of an incident by classifying findings by severity: low, medium, and high. You can use these classifications for determining remediation strategies and priorities. This rule allows you to optionally set the daysLowSev (FedRAMP Parameter: 180), daysMediumSev (FedRAMP Parameter: 90), and daysHighSev (FedRAMP Parameter: 30) for non-archived findings, as required by your organization's policies.
RA-5 The organization: a. Scans for vulnerabilities in the information system and hosted applications [Assignment: organization-defined frequency and/or randomly in accordance with organization-defined process] and when new vulnerabilities potentially affecting the system/applications are identified and reported; b. Employs vulnerability scanning tools and techniques that facilitate interoperability among tools and automate parts of the vulnerability management process by using standards for: 1. Enumerating platforms, software flaws, and improper configurations; 2. Formatting checklists and test procedures; and 3. Measuring vulnerability impact; c. Analyzes vulnerability scan reports and results from security control assessments; d. Remediates legitimate vulnerabilities [Assignment: organization-defined response times], in accordance with an organizational assessment of risk; and e. Shares information obtained from the vulnerability scanning process and security control assessments with [Assignment: organization-defined personnel or roles] to help eliminate similar vulnerabilities in other information systems (i.e., systemic weaknesses or deficiencies).

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
RA-5 The organization: a. Scans for vulnerabilities in the information system and hosted applications monthly [operating system/infrastructure; monthly web applications and databases] and when new vulnerabilities potentially affecting the system/applications are identified and reported; b. Employs vulnerability scanning tools and techniques that facilitate interoperability among tools and automate parts of the vulnerability management process by using standards for: 1. Enumerating platforms, software flaws, and improper configurations; 2. Formatting checklists and test procedures; and 3. Measuring vulnerability impact; c. Analyzes vulnerability scan reports and results from security control assessments; d. Remediates legitimate vulnerabilities: high-risk vulnerabilities mitigated within thirty (30) days from date of discovery; moderate-risk vulnerabilities mitigated within ninety (90) days from date of discovery; low risk vulnerabilities mitigated within one hundred and eighty (180) days from date of discovery, in accordance with an organizational assessment of risk; and e. Shares information obtained from the vulnerability scanning process and security control assessments with [Assignment: organization-defined personnel or roles] to help eliminate similar vulnerabilities in other information systems (i.e., systemic weaknesses or deficiencies).

guardduty-non-archived-findings

Amazon GuardDuty helps you understand the impact of an incident by classifying findings by severity: low, medium, and high. You can use these classifications for determining remediation strategies and priorities. This rule allows you to optionally set the daysLowSev (FedRAMP Parameter: 180), daysMediumSev (FedRAMP Parameter: 90), and daysHighSev (FedRAMP Parameter: 30) for non-archived findings, as required by your organization's policies.
SA-3(a) The organization: a. Manages the information system using [Assignment: organization-defined system development life cycle] that incorporates information security considerations.

codebuild-project-envvar-awscred-check

Ensure authentication credentials AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY do not exist within AWS Codebuild project environments. Do not store these variables in clear text. Storing these variables in clear text leads to unintended data exposure and unauthorized access.
SA-3(a) The organization: a. Manages the information system using [Assignment: organization-defined system development life cycle] that incorporates information security considerations.

ec2-instance-managed-by-systems-manager

An inventory of the software platforms and applications within the organization is possible by managing Amazon Elastic Compute Cloud (Amazon EC2) instances with AWS Systems Manager. Use AWS Systems Manager to provide detailed system configurations, operating system patch levels, services name and type, software installations, application name, publisher and version, and other details about your environment.
SA-3(a) The organization: a. Manages the information system using [Assignment: organization-defined system development life cycle] that incorporates information security considerations.

codebuild-project-source-repo-url-check

Ensure the GitHub or Bitbucket source repository URL does not contain personal access tokens, user name and password within AWS Codebuild project environments. Use OAuth instead of personal access tokens or a user name and password to grant authorization for accessing GitHub or Bitbucket repositories.
SA-10 The organization requires the developer of the information system, system component, or information system service to: a. Perform configuration management during system, component, or service development, implementation, AND operation; b. Document, manage, and control the integrity of changes to [Assignment: organization-defined configuration items under configuration management]; c. Implement only organization-approved changes to the system, component, or service; d. Document approved changes to the system, component, or service and the potential security impacts of such changes; and e. Track security flaws and flaw resolution within the system, component, or service and report findings to [Assignment: organization-defined personnel].

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
SA-10 The organization requires the developer of the information system, system component, or information system service to: a. Perform configuration management during system, component, or service development, implementation, AND operation; b. Document, manage, and control the integrity of changes to [Assignment: organization-defined configuration items under configuration management]; c. Implement only organization-approved changes to the system, component, or service; d. Document approved changes to the system, component, or service and the potential security impacts of such changes; and e. Track security flaws and flaw resolution within the system, component, or service and report findings to [Assignment: organization-defined personnel].

guardduty-non-archived-findings

Amazon GuardDuty helps you understand the impact of an incident by classifying findings by severity: low, medium, and high. You can use these classifications for determining remediation strategies and priorities. This rule allows you to optionally set the daysLowSev (FedRAMP Parameter: 180), daysMediumSev (FedRAMP Parameter: 90), and daysHighSev (FedRAMP Parameter: 30) for non-archived findings, as required by your organization's policies.
SA-10 The organization requires the developer of the information system, system component, or information system service to: a. Perform configuration management during system, component, or service development, implementation, AND operation; b. Document, manage, and control the integrity of changes to [Assignment: organization-defined configuration items under configuration management]; c. Implement only organization-approved changes to the system, component, or service; d. Document approved changes to the system, component, or service and the potential security impacts of such changes; and e. Track security flaws and flaw resolution within the system, component, or service and report findings to [Assignment: organization-defined personnel].

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
SA-10 The organization requires the developer of the information system, system component, or information system service to: a. Perform configuration management during system, component, or service development, implementation, AND operation; b. Document, manage, and control the integrity of changes to [Assignment: organization-defined configuration items under configuration management]; c. Implement only organization-approved changes to the system, component, or service; d. Document approved changes to the system, component, or service and the potential security impacts of such changes; and e. Track security flaws and flaw resolution within the system, component, or service and report findings to [Assignment: organization-defined personnel].

ec2-instance-managed-by-systems-manager

An inventory of the software platforms and applications within the organization is possible by managing Amazon Elastic Compute Cloud (Amazon EC2) instances with AWS Systems Manager. Use AWS Systems Manager to provide detailed system configurations, operating system patch levels, services name and type, software installations, application name, publisher and version, and other details about your environment.
SC-2 The information system separates user functionality (including user interface services) from information system management functionality.

iam-group-has-users-check

AWS Identity and Access Management (IAM) can help you incorporate the principles of least privilege and separation of duties with access permissions and authorizations, by ensuring that IAM groups have at least one IAM user. Placing IAM users in groups based on their associated permissions or job function is one way to incorporate least privilege.
SC-2 The information system separates user functionality (including user interface services) from information system management functionality.

iam-policy-no-statements-with-admin-access

AWS Identity and Access Management (IAM) can help you incorporate the principles of least privilege and separation of duties with access permissions and authorizations, restricting policies from containing "Effect": "Allow" with "Action": "*" over "Resource": "*". Allowing users to have more privileges than needed to complete a task may violate the principle of least privilege and separation of duties.
SC-4 The information system prevents unauthorized and unintended information transfer via shared system resources.

ec2-volume-inuse-check

This rule ensures that Amazon Elastic Block Store volumes that are attached to Amazon Elastic Compute Cloud (Amazon EC2) instances are marked for deletion when an instance is terminated. If an Amazon EBS volume isn’t deleted when the instance that it’s attached to is terminated, it may violate the concept of least functionality.
SC-5 The information system protects against or limits the effects of the following types of denial of service attacks: [Assignment: organization-defined types of denial of service attacks or references to sources for such information] by employing [Assignment: organization-defined security safeguards].

autoscaling-group-elb-healthcheck-required

The Elastic Load Balancer (ELB) health checks for Amazon Elastic Compute Cloud (Amazon EC2) Auto Scaling groups support maintenance of adequate capacity and availability. The load balancer periodically sends pings, attempts connections, or sends requests to test Amazon EC2 instances health in an auto-scaling group. If an instance is not reporting back, traffic is sent to a new Amazon EC2 instance.
SC-5 The information system protects against or limits the effects of the following types of denial of service attacks: [Assignment: organization-defined types of denial of service attacks or references to sources for such information] by employing [Assignment: organization-defined security safeguards].

dynamodb-autoscaling-enabled

Amazon DynamoDB auto scaling uses the AWS Application Auto Scaling service to adjust provisioned throughput capacity that automatically responds to actual traffic patterns. This enables a table or a global secondary index to increase its provisioned read/write capacity to handle sudden increases in traffic, without throttling.
SC-5 The information system protects against or limits the effects of the following types of denial of service attacks: [Assignment: organization-defined types of denial of service attacks or references to sources for such information] by employing [Assignment: organization-defined security safeguards].

rds-multi-az-support

Multi-AZ support in Amazon Relational Database Service (Amazon RDS) provides enhanced availability and durability for database instances. When you provision a Multi-AZ database instance, Amazon RDS automatically creates a primary database instance, and synchronously replicates the data to a standby instance in a different Availability Zone. Each Availability Zone runs on its own physically distinct, independent infrastructure, and is engineered to be highly reliable. In case of an infrastructure failure, Amazon RDS performs an automatic failover to the standby so that you can resume database operations as soon as the failover is complete.
SC-5 The information system protects against or limits the effects of the following types of denial of service attacks: [Assignment: organization-defined types of denial of service attacks or references to sources for such information] by employing [Assignment: organization-defined security safeguards].

s3-bucket-replication-enabled

Amazon Simple Storage Service (Amazon S3) Cross-Region Replication (CRR) supports maintaining adequate capacity and availability. CRR enables automatic, asynchronous copying of objects across Amazon S3 buckets to help ensure that data availability is maintained.
SC-5 The information system protects against or limits the effects of the following types of denial of service attacks: [Assignment: organization-defined types of denial of service attacks or references to sources for such information] by employing [Assignment: organization-defined security safeguards].

elb-cross-zone-load-balancing-enabled

Enable cross-zone load balancing for your Elastic Load Balancers (ELBs) to help maintain adequate capacity and availability. The cross-zone load balancing reduces the need to maintain equivalent numbers of instances in each enabled availability zone. It also improves your application's ability to handle the loss of one or more instances.
SC-5 The information system protects against or limits the effects of the following types of denial of service attacks: [Assignment: organization-defined types of denial of service attacks or references to sources for such information] by employing [Assignment: organization-defined security safeguards].

rds-instance-deletion-protection-enabled

Ensure Amazon Relational Database Service (Amazon RDS) instances have deletion protection enabled. Use deletion protection to prevent your Amazon RDS instances from being accidentally or maliciously deleted, which can lead to loss of availability for your applications.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

wafv2-logging-enabled

To help with logging and monitoring within your environment, enable AWS WAF (V2) logging on regional and global web ACLs. AWS WAF logging provides detailed information about the traffic that is analyzed by your web ACL. The logs record the time that AWS WAF received the request from your AWS resource, information about the request, and an action for the rule that each request matched.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

ec2-instances-in-vpc

Deploy Amazon Elastic Compute Cloud (Amazon EC2) instances within an Amazon Virtual Private Cloud (Amazon VPC) to enable secure communication between an instance and other services within the amazon VPC, without requiring an internet gateway, NAT device, or VPN connection. All traffic remains securely within the AWS Cloud. Because of their logical isolation, domains that reside within anAmazon VPC have an extra layer of security when compared to domains that use public endpoints. Assign Amazon EC2 instances to an Amazon VPC to properly manage access.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

internet-gateway-authorized-vpc-only

Manage access to resources in the AWS Cloud by ensuring that internet gateways are only attached to authorized Amazon Virtual Private Cloud (Amazon VPC). Internet gateways allow bi-directional internet access to and from the Amazon VPC that can potentially lead to unauthorized access to Amazon VPC resources.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

dms-replication-not-public

Manage access to the AWS Cloud by ensuring DMS replication instances cannot be publicly accessed. DMS replication instances can contain sensitive information and access control is required for such accounts.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

ebs-snapshot-public-restorable-check

Manage access to the AWS Cloud by ensuring EBS snapshots are not publicly restorable. EBS volume snapshots can contain sensitive information and access control is required for such accounts.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

ec2-instance-no-public-ip

Manage access to the AWS Cloud by ensuring Amazon Elastic Compute Cloud (Amazon EC2) instances cannot be publicly accessed. Amazon EC2 instances can contain sensitive information and access control is required for such accounts.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

elasticsearch-in-vpc-only

Manage access to the AWS Cloud by ensuring Amazon Elasticsearch Service (Amazon ES) Domains are within an Amazon Virtual Private Cloud (Amazon VPC). An Amazon ES domain within an Amazon VPC enables secure communication between Amazon ES and other services within the Amazon VPC without the need for an internet gateway, NAT device, or VPN connection.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

emr-master-no-public-ip

Manage access to the AWS Cloud by ensuring Amazon EMR cluster master nodes cannot be publicly accessed. Amazon EMR cluster master nodes can contain sensitive information and access control is required for such accounts.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

restricted-ssh

Amazon Elastic Compute Cloud (Amazon EC2) Security Groups can help manage network access by providing stateful filtering of ingress and egress network traffic to AWS resources. Not allowing ingress (or remote) traffic from 0.0.0.0/0 to port 22 on your resources help you restricting remote access.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

lambda-function-public-access-prohibited

Manage access to resources in the AWS Cloud by ensuring AWS Lambda functions cannot be publicly accessed. Public access can potentially lead to degradation of availability of resources.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

lambda-inside-vpc

Deploy AWS Lambda functions within an Amazon Virtual Private Cloud (Amazon VPC) for a secure communication between a function and other services within the Amazon VPC. With this configuration, there is no requirement for an internet gateway, NAT device, or VPN connection. All the traffic remains securely within the AWS Cloud. Because of their logical isolation, domains that reside within an Amazon VPC have an extra layer of security when compared to domains that use public endpoints. To properly manage access, AWS Lambda functions should be assigned to a VPC.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

rds-instance-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information, and principles and access control is required for such accounts.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

rds-snapshots-public-prohibited

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information and principles and access control is required for such accounts.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

redshift-cluster-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Redshift clusters are not public. Amazon Redshift clusters can contain sensitive information and principles and access control is required for such accounts.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

restricted-common-ports

Manage access to resources in the AWS Cloud by ensuring common ports are restricted on Amazon Elastic Compute Cloud (Amazon EC2) security groups. Not restricting access to ports to trusted sources can lead to attacks against the availability, integrity and confidentiality of systems. This rule allows you to optionally set blockedPort1 - blockedPort5 parameters (Config Defaults: 20,21,3389,3306,4333). The actual values should reflect your organization's policies.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

s3-account-level-public-access-blocks

Manage access to resources in the AWS Cloud by ensuring that Amazon Simple Storage Service (Amazon S3) buckets cannot be publicly accessed. This rule helps keeping sensitive data safe from unauthorized remote users by preventing public access. This rule allows you to optionally set the ignorePublicAcls (Config Default: True), blockPublicPolicy (Config Default: True), blockPublicAcls (Config Default: True), and restrictPublicBuckets parameters (Config Default: True). The actual values should reflect your organization's policies.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

s3-bucket-public-read-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

s3-bucket-public-write-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

sagemaker-notebook-no-direct-internet-access

Manage access to resources in the AWS Cloud by ensuring that Amazon SageMaker notebooks do not allow direct internet access. By preventing direct internet access, you can keep sensitive data from being accessed by unauthorized users.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

vpc-default-security-group-closed

Amazon Elastic Compute Cloud (Amazon EC2) security groups can help in the management of network access by providing stateful filtering of ingress and egress network traffic to AWS resources. Restricting all the traffic on the default security group helps in restricting remote access to your AWS resources.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

alb-http-to-https-redirection-check

To help protect data in transit, ensure that your Application Load Balancer automatically redirects unencrypted HTTP requests to HTTPS. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

elb-tls-https-listeners-only

Ensure that your Elastic Load Balancers (ELBs) are configured with SSL or HTTPS listeners. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

s3-bucket-ssl-requests-only

To help protect data in transit, ensure that your Amazon Simple Storage Service (Amazon S3) buckets require requests to use Secure Socket Layer (SSL). Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

redshift-require-tls-ssl

Ensure that your Amazon Redshift clusters require TLS/SSL encryption to connect to SQL clients. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

elb-acm-certificate-required

Because sensitive data can exist and to help protect data at transit, ensure encryption is enabled for your Elastic Load Balancing. Use AWS Certificate Manager to manage, provision and deploy public and private SSL/TLS certificates with AWS services and internal resources.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

alb-waf-enabled

Ensure AWS WAF is enabled on Elastic Load Balancers (ELB) to help protect web applications. A WAF helps to protect your web applications or APIs against common web exploits. These web exploits may affect availability, compromise security, or consume excessive resources within your environment.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

s3-bucket-policy-grantee-check

Manage access to the AWS Cloud by enabling s3_ bucket_policy_grantee_check. This rule checks that the access granted by the Amazon S3 bucket is restricted by any of the AWS principals, federated users, service principals, IP addresses, or Amazon Virtual Private Cloud (Amazon VPC) IDs that you provide.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

vpc-sg-open-only-to-authorized-ports

Manage access to resources in the AWS Cloud by ensuring common ports are restricted on Amazon Elastic Compute Cloud (Amazon EC2) Security Groups. Not restricting access on ports to trusted sources can lead to attacks against the availability, integrity and confidentiality of systems. By restricting access to resources within a security group from the internet (0.0.0.0/0) remote access can be controlled to internal systems.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

alb-http-drop-invalid-header-enabled

Ensure that your Elastic Load Balancers (ELB) are configured to drop http headers. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-7 The information system: a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system; b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.

elasticsearch-node-to-node-encryption-check

Ensure node-to-node encryption for Amazon Elasticsearch Service is enabled. Node-to-node encryption enables TLS 1.2 encryption for all communications within the Amazon Virtual Private Cloud (Amazon VPC). Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-7(3) The organization limits the number of external network connections to the information system.

ec2-instances-in-vpc

Deploy Amazon Elastic Compute Cloud (Amazon EC2) instances within an Amazon Virtual Private Cloud (Amazon VPC) to enable secure communication between an instance and other services within the amazon VPC, without requiring an internet gateway, NAT device, or VPN connection. All traffic remains securely within the AWS Cloud. Because of their logical isolation, domains that reside within anAmazon VPC have an extra layer of security when compared to domains that use public endpoints. Assign Amazon EC2 instances to an Amazon VPC to properly manage access.
SC-7(3) The organization limits the number of external network connections to the information system.

internet-gateway-authorized-vpc-only

Manage access to resources in the AWS Cloud by ensuring that internet gateways are only attached to authorized Amazon Virtual Private Cloud (Amazon VPC). Internet gateways allow bi-directional internet access to and from the Amazon VPC that can potentially lead to unauthorized access to Amazon VPC resources.
SC-7(3) The organization limits the number of external network connections to the information system.

dms-replication-not-public

Manage access to the AWS Cloud by ensuring DMS replication instances cannot be publicly accessed. DMS replication instances can contain sensitive information and access control is required for such accounts.
SC-7(3) The organization limits the number of external network connections to the information system.

ebs-snapshot-public-restorable-check

Manage access to the AWS Cloud by ensuring EBS snapshots are not publicly restorable. EBS volume snapshots can contain sensitive information and access control is required for such accounts.
SC-7(3) The organization limits the number of external network connections to the information system.

ec2-instance-no-public-ip

Manage access to the AWS Cloud by ensuring Amazon Elastic Compute Cloud (Amazon EC2) instances cannot be publicly accessed. Amazon EC2 instances can contain sensitive information and access control is required for such accounts.
SC-7(3) The organization limits the number of external network connections to the information system.

elasticsearch-in-vpc-only

Manage access to the AWS Cloud by ensuring Amazon Elasticsearch Service (Amazon ES) Domains are within an Amazon Virtual Private Cloud (Amazon VPC). An Amazon ES domain within an Amazon VPC enables secure communication between Amazon ES and other services within the Amazon VPC without the need for an internet gateway, NAT device, or VPN connection.
SC-7(3) The organization limits the number of external network connections to the information system.

emr-master-no-public-ip

Manage access to the AWS Cloud by ensuring Amazon EMR cluster master nodes cannot be publicly accessed. Amazon EMR cluster master nodes can contain sensitive information and access control is required for such accounts.
SC-7(3) The organization limits the number of external network connections to the information system.

restricted-ssh

Amazon Elastic Compute Cloud (Amazon EC2) Security Groups can help manage network access by providing stateful filtering of ingress and egress network traffic to AWS resources. Not allowing ingress (or remote) traffic from 0.0.0.0/0 to port 22 on your resources help you restricting remote access.
SC-7(3) The organization limits the number of external network connections to the information system.

lambda-function-public-access-prohibited

Manage access to resources in the AWS Cloud by ensuring AWS Lambda functions cannot be publicly accessed. Public access can potentially lead to degradation of availability of resources.
SC-7(3) The organization limits the number of external network connections to the information system.

lambda-inside-vpc

Deploy AWS Lambda functions within an Amazon Virtual Private Cloud (Amazon VPC) for a secure communication between a function and other services within the Amazon VPC. With this configuration, there is no requirement for an internet gateway, NAT device, or VPN connection. All the traffic remains securely within the AWS Cloud. Because of their logical isolation, domains that reside within an Amazon VPC have an extra layer of security when compared to domains that use public endpoints. To properly manage access, AWS Lambda functions should be assigned to a VPC.
SC-7(3) The organization limits the number of external network connections to the information system.

rds-instance-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information, and principles and access control is required for such accounts.
SC-7(3) The organization limits the number of external network connections to the information system.

rds-snapshots-public-prohibited

Manage access to resources in the AWS Cloud by ensuring that Amazon Relational Database Service (Amazon RDS) instances are not public. Amazon RDS database instances can contain sensitive information and principles and access control is required for such accounts.
SC-7(3) The organization limits the number of external network connections to the information system.

redshift-cluster-public-access-check

Manage access to resources in the AWS Cloud by ensuring that Amazon Redshift clusters are not public. Amazon Redshift clusters can contain sensitive information and principles and access control is required for such accounts.
SC-7(3) The organization limits the number of external network connections to the information system.

restricted-common-ports

Manage access to resources in the AWS Cloud by ensuring common ports are restricted on Amazon Elastic Compute Cloud (Amazon EC2) security groups. Not restricting access to ports to trusted sources can lead to attacks against the availability, integrity and confidentiality of systems. This rule allows you to optionally set blockedPort1 - blockedPort5 parameters (Config Defaults: 20,21,3389,3306,4333). The actual values should reflect your organization's policies.
SC-7(3) The organization limits the number of external network connections to the information system.

s3-account-level-public-access-blocks

Manage access to resources in the AWS Cloud by ensuring that Amazon Simple Storage Service (Amazon S3) buckets cannot be publicly accessed. This rule helps keeping sensitive data safe from unauthorized remote users by preventing public access. This rule allows you to optionally set the ignorePublicAcls (Config Default: True), blockPublicPolicy (Config Default: True), blockPublicAcls (Config Default: True), and restrictPublicBuckets parameters (Config Default: True). The actual values should reflect your organization's policies.
SC-7(3) The organization limits the number of external network connections to the information system.

s3-bucket-policy-grantee-check

Manage access to the AWS Cloud by enabling s3_ bucket_policy_grantee_check. This rule checks that the access granted by the Amazon S3 bucket is restricted by any of the AWS principals, federated users, service principals, IP addresses, or Amazon Virtual Private Cloud (Amazon VPC) IDs that you provide.
SC-7(3) The organization limits the number of external network connections to the information system.

s3-bucket-public-read-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
SC-7(3) The organization limits the number of external network connections to the information system.

s3-bucket-public-write-prohibited

Manage access to resources in the AWS Cloud by only allowing authorized users, processes, and devices access to Amazon Simple Storage Service (Amazon S3) buckets. The management of access should be consistent with the classification of the data.
SC-7(3) The organization limits the number of external network connections to the information system.

sagemaker-notebook-no-direct-internet-access

Manage access to resources in the AWS Cloud by ensuring that Amazon SageMaker notebooks do not allow direct internet access. By preventing direct internet access, you can keep sensitive data from being accessed by unauthorized users.
SC-7(3) The organization limits the number of external network connections to the information system.

vpc-default-security-group-closed

Amazon Elastic Compute Cloud (Amazon EC2) security groups can help in the management of network access by providing stateful filtering of ingress and egress network traffic to AWS resources. Restricting all the traffic on the default security group helps in restricting remote access to your AWS resources.
SC-7(3) The organization limits the number of external network connections to the information system.

vpc-sg-open-only-to-authorized-ports

Manage access to resources in the AWS Cloud by ensuring common ports are restricted on Amazon Elastic Compute Cloud (Amazon EC2) Security Groups. Not restricting access on ports to trusted sources can lead to attacks against the availability, integrity and confidentiality of systems. By restricting access to resources within a security group from the internet (0.0.0.0/0) remote access can be controlled to internal systems.
SC-8 The information system protects the confidentiality AND integrity of transmitted information.

alb-http-to-https-redirection-check

To help protect data in transit, ensure that your Application Load Balancer automatically redirects unencrypted HTTP requests to HTTPS. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8 The information system protects the confidentiality AND integrity of transmitted information.

alb-http-drop-invalid-header-enabled

Ensure that your Elastic Load Balancers (ELB) are configured to drop http headers. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8 The information system protects the confidentiality AND integrity of transmitted information.

elasticsearch-node-to-node-encryption-check

Ensure node-to-node encryption for Amazon Elasticsearch Service is enabled. Node-to-node encryption enables TLS 1.2 encryption for all communications within the Amazon Virtual Private Cloud (Amazon VPC). Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8 The information system protects the confidentiality AND integrity of transmitted information.

elb-tls-https-listeners-only

Ensure that your Elastic Load Balancers (ELBs) are configured with SSL or HTTPS listeners. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8 The information system protects the confidentiality AND integrity of transmitted information.

redshift-require-tls-ssl

Ensure that your Amazon Redshift clusters require TLS/SSL encryption to connect to SQL clients. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8 The information system protects the confidentiality AND integrity of transmitted information.

s3-bucket-ssl-requests-only

To help protect data in transit, ensure that your Amazon Simple Storage Service (Amazon S3) buckets require requests to use Secure Socket Layer (SSL). Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8 The information system protects the confidentiality AND integrity of transmitted information.

elb-acm-certificate-required

Because sensitive data can exist and to help protect data at transit, ensure encryption is enabled for your Elastic Load Balancing. Use AWS Certificate Manager to manage, provision and deploy public and private SSL/TLS certificates with AWS services and internal resources.
SC-8(1) The information system implements cryptographic mechanisms to [Selection (one or more): prevent unauthorized disclosure of information; detect changes to information] during transmission unless otherwise protected by [Assignment: organization-defined alternative physical safeguards].

alb-http-to-https-redirection-check

To help protect data in transit, ensure that your Application Load Balancer automatically redirects unencrypted HTTP requests to HTTPS. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8(1) The information system implements cryptographic mechanisms to [Selection (one or more): prevent unauthorized disclosure of information; detect changes to information] during transmission unless otherwise protected by [Assignment: organization-defined alternative physical safeguards].

alb-http-drop-invalid-header-enabled

Ensure that your Elastic Load Balancers (ELB) are configured to drop http headers. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8(1) The information system implements cryptographic mechanisms to [Selection (one or more): prevent unauthorized disclosure of information; detect changes to information] during transmission unless otherwise protected by [Assignment: organization-defined alternative physical safeguards].

elasticsearch-node-to-node-encryption-check

Ensure node-to-node encryption for Amazon Elasticsearch Service is enabled. Node-to-node encryption enables TLS 1.2 encryption for all communications within the Amazon Virtual Private Cloud (Amazon VPC). Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8(1) The information system implements cryptographic mechanisms to [Selection (one or more): prevent unauthorized disclosure of information; detect changes to information] during transmission unless otherwise protected by [Assignment: organization-defined alternative physical safeguards].

elb-tls-https-listeners-only

Ensure that your Elastic Load Balancers (ELBs) are configured with SSL or HTTPS listeners. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8(1) The information system implements cryptographic mechanisms to [Selection (one or more): prevent unauthorized disclosure of information; detect changes to information] during transmission unless otherwise protected by [Assignment: organization-defined alternative physical safeguards].

redshift-require-tls-ssl

Ensure that your Amazon Redshift clusters require TLS/SSL encryption to connect to SQL clients. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8(1) The information system implements cryptographic mechanisms to [Selection (one or more): prevent unauthorized disclosure of information; detect changes to information] during transmission unless otherwise protected by [Assignment: organization-defined alternative physical safeguards].

s3-bucket-ssl-requests-only

To help protect data in transit, ensure that your Amazon Simple Storage Service (Amazon S3) buckets require requests to use Secure Socket Layer (SSL). Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-8(1) The information system implements cryptographic mechanisms to [Selection (one or more): prevent unauthorized disclosure of information; detect changes to information] during transmission unless otherwise protected by [Assignment: organization-defined alternative physical safeguards].

elb-acm-certificate-required

Because sensitive data can exist and to help protect data at transit, ensure encryption is enabled for your Elastic Load Balancing. Use AWS Certificate Manager to manage, provision and deploy public and private SSL/TLS certificates with AWS services and internal resources.
SC-12 The organization establishes and manages cryptographic keys for required cryptography employed within the information system in accordance with [Assignment: organization-defined requirements for key generation, distribution, storage, access, and destruction].

cmk-backing-key-rotation-enabled

Enable key rotation to ensure that keys are rotated once they have reached the end of their crypto period.
SC-12 The organization establishes and manages cryptographic keys for required cryptography employed within the information system in accordance with [Assignment: organization-defined requirements for key generation, distribution, storage, access, and destruction].

acm-certificate-expiration-check

Ensure network integrity is protected by ensuring X509 certificates are issued by AWS ACM. These certificates must be valid and unexpired. This rule requires a value for daysToExpiration (AWS Foundational Security Best Practices value: 90). The actual value should reflect your organization's policies.
SC-12 The organization establishes and manages cryptographic keys for required cryptography employed within the information system in accordance with [Assignment: organization-defined requirements for key generation, distribution, storage, access, and destruction].

kms-cmk-not-scheduled-for-deletion

To help protect data at rest, ensure necessary customer master keys (CMKs) are not scheduled for deletion in AWS Key Management Service (AWS KMS). Because key deletion is necessary at times, this rule can assist in checking for all keys scheduled for deletion, in case a key was scheduled unintentionally.
SC-13 The information system implements FIPS-validated or NSA-approved cryptography in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and standards.

dynamodb-table-encrypted-kms

Ensure that encryption is enabled for your Amazon DynamoDB tables. Because sensitive data can exist at rest in these tables, enable encryption at rest to help protect that data. By default, DynamoDB tables are encrypted with an AWS owned customer master key (CMK).
SC-23 The information system protects the authenticity of communications sessions.

alb-http-to-https-redirection-check

To help protect data in transit, ensure that your Application Load Balancer automatically redirects unencrypted HTTP requests to HTTPS. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-23 The information system protects the authenticity of communications sessions.

alb-http-drop-invalid-header-enabled

Ensure that your Elastic Load Balancers (ELB) are configured to drop http headers. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-23 The information system protects the authenticity of communications sessions.

elb-tls-https-listeners-only

Ensure that your Elastic Load Balancers (ELBs) are configured with SSL or HTTPS listeners. Because sensitive data can exist, enable encryption in transit to help protect that data.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

api-gw-cache-enabled-and-encrypted

To help protect data at rest, ensure encryption is enabled for your API Gateway stage’s cache. Because sensitive data can be captured for the API method, enable encryption at rest to help protect that data.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

cloud-trail-encryption-enabled

Because sensitive data may exist and to help protect data at rest, ensure encryption is enabled for your AWS CloudTrail trails.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

cloudwatch-log-group-encrypted

To help protect sensitive data at rest, ensure encryption is enabled for your Amazon CloudWatch Log Groups.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

efs-encrypted-check

Because sensitive data can exist and to help protect data at rest, ensure encryption is enabled for your Amazon Elastic File System (EFS).
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

elasticsearch-encrypted-at-rest

Because sensitive data can exist and to help protect data at rest, ensure encryption is enabled for your Amazon Elasticsearch Service (Amazon ES) domains.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

encrypted-volumes

Because senstive data can exist and to help protect data at rest, ensure encryption is enabled for your Amazon Elastic Block Store (Amazon EBS) volumes.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

kms-cmk-not-scheduled-for-deletion

To help protect data at rest, ensure necessary customer master keys (CMKs) are not scheduled for deletion in AWS Key Management Service (AWS KMS). Because key deletion is necessary at times, this rule can assist in checking for all keys scheduled for deletion, in case a key was scheduled unintentionally.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

redshift-cluster-configuration-check

To protect data at rest, ensure that encryption is enabled for your Amazon Redshift clusters. You must also ensure that required configurations are deployed on Amazon Redshift clusters. The audit logging should be enabled to provide information about connections and user activities in the database. This rule requires that a value is set for clusterDbEncrypted (Config Default : TRUE), and loggingEnabled (Config Default: TRUE). The actual values should reflect your organization's policies.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

s3-bucket-default-lock-enabled

Ensure that your Amazon Simple Storage Service (Amazon S3) bucket has lock enabled, by default. Because sensitive data can exist at rest in S3 buckets, enforce object locks at rest to help protect that data.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

s3-bucket-server-side-encryption-enabled

To help protect data at rest, ensure encryption is enabled for your Amazon Simple Storage Service (Amazon S3) buckets. Because sensitive data can exist at rest in Amazon S3 buckets, enable encryption to help protect that data.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

sagemaker-endpoint-configuration-kms-key-configured

To help protect data at rest, ensure encryption with AWS Key Management Service (AWS KMS) is enabled for your SageMaker endpoint. Because sensitive data can exist at rest in SageMaker endpoint, enable encryption at rest to help protect that data.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

sagemaker-notebook-instance-kms-key-configured

To help protect data at rest, ensure encryption with AWS Key Management Service (AWS KMS) is enabled for your SageMaker notebook. Because sensitive data can exist at rest in SageMaker notebook, enable encryption at rest to help protect that data.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

sns-encrypted-kms

To help protect data at rest, ensure that your Amazon Simple Notification Service (Amazon SNS) topics require encryption using AWS Key Management Service (AWS KMS). Because sensitive data can exist at rest in published messages, enable encryption at rest to help protect that data.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

ec2-ebs-encryption-by-default

To help protect data at rest, ensure that encryption is enabled for your Amazon Elastic Block Store (Amazon EBS) volumes. Because sensitive data can exist at rest in these volumes, enable encryption at rest to help protect that data.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

rds-snapshot-encrypted

Ensure that encryption is enabled for your Amazon Relational Database Service (Amazon RDS) snapshots. Because sensitive data can exist at rest, enable encryption at rest to help protect that data.
SC-28 The information system protects the confidentiality AND integrity of [Assignment: organization-defined information at rest].

rds-storage-encrypted

To help protect data at rest, ensure that encryption is enabled for your Amazon Relational Database Service (Amazon RDS) instances. Because sensitive data can exist at rest in Amazon RDS instances, enable encryption at rest to help protect that data.
SI-2(2) The organization employs automated mechanisms at least monthly to determine the state of information system components with regard to flaw remediation.

ec2-managedinstance-patch-compliance-status-check

Enable this rule to help with identification and documentation of Amazon Elastic Compute Cloud (Amazon EC2) vulnerabilities. The rule checks if Amazon EC2 instance patch compliance in AWS Systems Manager as required by your organization’s policies and procedures.
SI-2(2) The organization employs automated mechanisms at least monthly to determine the state of information system components with regard to flaw remediation.

ec2-instance-managed-by-systems-manager

An inventory of the software platforms and applications within the organization is possible by managing Amazon Elastic Compute Cloud (Amazon EC2) instances with AWS Systems Manager. Use AWS Systems Manager to provide detailed system configurations, operating system patch levels, services name and type, software installations, application name, publisher and version, and other details about your environment.
SI-2(2) The organization employs automated mechanisms at least monthly to determine the state of information system components with regard to flaw remediation.

ec2-managedinstance-association-compliance-status-check

Use AWS Systems Manager Associations to help with inventory of software platforms and applications within an organization. AWS Systems Manager assigns a configuration state to your managed instances and allows you to set baselines of operating system patch levels, software installations, application configurations, and other details about your environment.
SI-4(1) The organization connects and configures individual intrusion detection tools into an information system-wide intrusion detection system.

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
SI-4(16) The organization correlates information from monitoring tools employed throughout the information system.

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
SI-4(16) The organization correlates information from monitoring tools employed throughout the information system.

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
SI-4(2) The organization employs automated tools to support near real-time analysis of events.

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
SI-4(2) The organization employs automated tools to support near real-time analysis of events.

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
SI-4(2) The organization employs automated tools to support near real-time analysis of events.

cloudwatch-alarm-action-check

Amazon CloudWatch alarms alert when a metric breaches the threshold for a specified number of evaluation periods. The alarm performs one or more actions based on the value of the metric or expression relative to a threshold over a number of time periods. This rule requires a value for alarmActionRequired (Config Default: True), insufficientDataActionRequired (Config Default: True), okActionRequired (Config Default: False). The actual value should reflect the alarm actions for your environment.
SI-4(2) The organization employs automated tools to support near real-time analysis of events.

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
SI-4(2) The organization employs automated tools to support near real-time analysis of events.

ec2-instance-detailed-monitoring-enabled

Enable this rule to help improve Amazon Elastic Compute Cloud (Amazon EC2) instance monitoring on the Amazon EC2 console, which displays monitoring graphs with a 1-minute period for the instance.
SI-4(4) The information system monitors inbound and outbound communications traffic continuously for unusual or unauthorized activities or conditions.

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
SI-4(4) The information system monitors inbound and outbound communications traffic continuously for unusual or unauthorized activities or conditions.

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
SI-4(4) The information system monitors inbound and outbound communications traffic continuously for unusual or unauthorized activities or conditions.

cloudwatch-alarm-action-check

Amazon CloudWatch alarms alert when a metric breaches the threshold for a specified number of evaluation periods. The alarm performs one or more actions based on the value of the metric or expression relative to a threshold over a number of time periods. This rule requires a value for alarmActionRequired (Config Default: True), insufficientDataActionRequired (Config Default: True), okActionRequired (Config Default: False). The actual value should reflect the alarm actions for your environment.
SI-4(4) The information system monitors inbound and outbound communications traffic continuously for unusual or unauthorized activities or conditions.

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
SI-4(5) The information system alerts [Assignment: organization-defined personnel or roles] when the following indications of compromise or potential compromise occur: [Assignment: organization- defined compromise indicators].

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
SI-4(5) The information system alerts [Assignment: organization-defined personnel or roles] when the following indications of compromise or potential compromise occur: [Assignment: organization- defined compromise indicators].

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
SI-4(5) The information system alerts [Assignment: organization-defined personnel or roles] when the following indications of compromise or potential compromise occur: [Assignment: organization- defined compromise indicators].

cloudwatch-alarm-action-check

Amazon CloudWatch alarms alert when a metric breaches the threshold for a specified number of evaluation periods. The alarm performs one or more actions based on the value of the metric or expression relative to a threshold over a number of time periods. This rule requires a value for alarmActionRequired (Config Default: True), insufficientDataActionRequired (Config Default: True), okActionRequired (Config Default: False). The actual value should reflect the alarm actions for your environment.
SI-4(5) The information system alerts [Assignment: organization-defined personnel or roles] when the following indications of compromise or potential compromise occur: [Assignment: organization- defined compromise indicators].

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
SI-4(a)(b)(c) The organization: a. Monitors the information system to detect: 1. Attacks and indicators of potential attacks in accordance with [Assignment: organization- defined monitoring objectives]; and 2. Unauthorized local, network, and remote connections; b. Identifies unauthorized use of the information system through [Assignment: organization- defined techniques and methods]; c. Deploys monitoring devices: i. strategically within the information system to collect organization-determined essential information; and (ii) at ad hoc locations within the system to track specific types of transactions of interest to the organization.

guardduty-enabled-centralized

Amazon GuardDuty can help to monitor and detect potential cybersecurity events by using threat intelligence feeds. These include lists of malicious IPs and machine learning to identify unexpected, unauthorized, and malicious activity within your AWS Cloud environment.
SI-4(a)(b)(c) The organization: a. Monitors the information system to detect: 1. Attacks and indicators of potential attacks in accordance with [Assignment: organization- defined monitoring objectives]; and 2. Unauthorized local, network, and remote connections; b. Identifies unauthorized use of the information system through [Assignment: organization- defined techniques and methods]; c. Deploys monitoring devices: i. strategically within the information system to collect organization-determined essential information; and (ii) at ad hoc locations within the system to track specific types of transactions of interest to the organization.

guardduty-non-archived-findings

Amazon GuardDuty helps you understand the impact of an incident by classifying findings by severity: low, medium, and high. You can use these classifications for determining remediation strategies and priorities. This rule allows you to optionally set the daysLowSev (FedRAMP Parameter: 180), daysMediumSev (FedRAMP Parameter: 90), and daysHighSev (FedRAMP Parameter: 30) for non-archived findings, as required by your organization's policies.
SI-4(a)(b)(c) The organization: a. Monitors the information system to detect: 1. Attacks and indicators of potential attacks in accordance with [Assignment: organization- defined monitoring objectives]; and 2. Unauthorized local, network, and remote connections; b. Identifies unauthorized use of the information system through [Assignment: organization- defined techniques and methods]; c. Deploys monitoring devices: i. strategically within the information system to collect organization-determined essential information; and (ii) at ad hoc locations within the system to track specific types of transactions of interest to the organization.

alb-waf-enabled

Ensure AWS WAF is enabled on Elastic Load Balancers (ELB) to help protect web applications. A WAF helps to protect your web applications or APIs against common web exploits. These web exploits may affect availability, compromise security, or consume excessive resources within your environment.
SI-4(a)(b)(c) The organization: a. Monitors the information system to detect: 1. Attacks and indicators of potential attacks in accordance with [Assignment: organization- defined monitoring objectives]; and 2. Unauthorized local, network, and remote connections; b. Identifies unauthorized use of the information system through [Assignment: organization- defined techniques and methods]; c. Deploys monitoring devices: i. strategically within the information system to collect organization-determined essential information; and (ii) at ad hoc locations within the system to track specific types of transactions of interest to the organization.

wafv2-logging-enabled

To help with logging and monitoring within your environment, enable AWS WAF (V2) logging on regional and global web ACLs. AWS WAF logging provides detailed information about the traffic that is analyzed by your web ACL. The logs record the time that AWS WAF received the request from your AWS resource, information about the request, and an action for the rule that each request matched.
SI-4(a)(b)(c) The organization: a. Monitors the information system to detect: 1. Attacks and indicators of potential attacks in accordance with [Assignment: organization- defined monitoring objectives]; and 2. Unauthorized local, network, and remote connections; b. Identifies unauthorized use of the information system through [Assignment: organization- defined techniques and methods]; c. Deploys monitoring devices: i. strategically within the information system to collect organization-determined essential information; and (ii) at ad hoc locations within the system to track specific types of transactions of interest to the organization.

securityhub-enabled

AWS Security Hub helps to monitor unauthorized personnel, connections, devices, and software. AWS Security Hub aggregates, organizes, and prioritizes the security alerts, or findings, from multiple AWS services. Some such services are Amazon Security Hub, Amazon Inspector, Amazon Macie, AWS Identity and Access Management (IAM) Access Analyzer, and AWS Firewall Manager, and AWS Partner solutions.
SI-4(a)(b)(c) The organization: a. Monitors the information system to detect: 1. Attacks and indicators of potential attacks in accordance with [Assignment: organization- defined monitoring objectives]; and 2. Unauthorized local, network, and remote connections; b. Identifies unauthorized use of the information system through [Assignment: organization- defined techniques and methods]; c. Deploys monitoring devices: i. strategically within the information system to collect organization-determined essential information; and (ii) at ad hoc locations within the system to track specific types of transactions of interest to the organization.

cloudwatch-alarm-action-check

Amazon CloudWatch alarms alert when a metric breaches the threshold for a specified number of evaluation periods. The alarm performs one or more actions based on the value of the metric or expression relative to a threshold over a number of time periods. This rule requires a value for alarmActionRequired (Config Default: True), insufficientDataActionRequired (Config Default: True), okActionRequired (Config Default: False). The actual value should reflect the alarm actions for your environment.
SI-4(a)(b)(c) The organization: a. Monitors the information system to detect: 1. Attacks and indicators of potential attacks in accordance with [Assignment: organization- defined monitoring objectives]; and 2. Unauthorized local, network, and remote connections; b. Identifies unauthorized use of the information system through [Assignment: organization- defined techniques and methods]; c. Deploys monitoring devices: i. strategically within the information system to collect organization-determined essential information; and (ii) at ad hoc locations within the system to track specific types of transactions of interest to the organization.

cloud-trail-cloud-watch-logs-enabled

Use Amazon CloudWatch to centrally collect and manage log event activity. Inclusion of AWS CloudTrail data provides details of API call activity within your AWS account.
SI-4(a)(b)(c) The organization: a. Monitors the information system to detect: 1. Attacks and indicators of potential attacks in accordance with [Assignment: organization- defined monitoring objectives]; and 2. Unauthorized local, network, and remote connections; b. Identifies unauthorized use of the information system through [Assignment: organization- defined techniques and methods]; c. Deploys monitoring devices: i. strategically within the information system to collect organization-determined essential information; and (ii) at ad hoc locations within the system to track specific types of transactions of interest to the organization.

ec2-instance-detailed-monitoring-enabled

Enable this rule to help improve Amazon Elastic Compute Cloud (Amazon EC2) instance monitoring on the Amazon EC2 console, which displays monitoring graphs with a 1-minute period for the instance.
SI-7 The organization employs integrity verification tools to detect unauthorized changes to [Assignment: organization-defined software, firmware, and information].

cloud-trail-log-file-validation-enabled

Utilize AWS CloudTrail log file validation to check the integrity of CloudTrail logs. Log file validation helps determine if a log file was modified or deleted or unchanged after CloudTrail delivered it. This feature is built using industry standard algorithms: SHA-256 for hashing and SHA-256 with RSA for digital signing. This makes it computationally infeasible to modify, delete or forge CloudTrail log files without detection.
SI-7(1) The information system performs an integrity check security relevant events at least monthly.

ec2-instance-managed-by-systems-manager

An inventory of the software platforms and applications within the organization is possible by managing Amazon Elastic Compute Cloud (Amazon EC2) instances with AWS Systems Manager. Use AWS Systems Manager to provide detailed system configurations, operating system patch levels, services name and type, software installations, application name, publisher and version, and other details about your environment.
SI-7(1) The information system performs an integrity check security relevant events at least monthly.

ec2-managedinstance-patch-compliance-status-check

Enable this rule to help with identification and documentation of Amazon Elastic Compute Cloud (Amazon EC2) vulnerabilities. The rule checks if Amazon EC2 instance patch compliance in AWS Systems Manager as required by your organization’s policies and procedures.
SI-7(1) The information system performs an integrity check security relevant events at least monthly.

cloud-trail-log-file-validation-enabled

Utilize AWS CloudTrail log file validation to check the integrity of CloudTrail logs. Log file validation helps determine if a log file was modified or deleted or unchanged after CloudTrail delivered it. This feature is built using industry standard algorithms: SHA-256 for hashing and SHA-256 with RSA for digital signing. This makes it computationally infeasible to modify, delete or forge CloudTrail log files without detection.
SI-12 The organization handles and retains information within the information system and information output from the system in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and operational requirements.

s3-bucket-versioning-enabled

Amazon Simple Storage Service (Amazon S3) bucket versioning helps keep multiple variants of an object in the same Amazon S3 bucket. Use versioning to preserve, retrieve, and restore every version of every object stored in your Amazon S3 bucket. Versioning helps you to easily recover from unintended user actions and application failures.
SI-12 The organization handles and retains information within the information system and information output from the system in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and operational requirements.

db-instance-backup-enabled

The backup feature of Amazon RDS creates backups of your databases and transaction logs. Amazon RDS automatically creates a storage volume snapshot of your DB instance, backing up the entire DB instance. The system allows you to set specific retention periods to meet your resilience requirements.
SI-12 The organization handles and retains information within the information system and information output from the system in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and operational requirements.

dynamodb-pitr-enabled

Enable this rule to check that information has been backed up. It also maintains the backups by ensuring that point-in-time recovery is enabled in Amazon DynamoDB. The recovery maintains continuous backups of your table for the last 35 days.
SI-12 The organization handles and retains information within the information system and information output from the system in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and operational requirements.

elasticache-redis-cluster-automatic-backup-check

When automatic backups are enabled, Amazon ElastiCache creates a backup of the cluster on a daily basis. The backup can be retained for a number of days as specified by your organization. Automatic backups can help guard against data loss. If a failure occurs, you can create a new cluster, which restores your data from the most recent backup.
SI-12 The organization handles and retains information within the information system and information output from the system in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and operational requirements.

rds-in-backup-plan

To help with data back-up processes, ensure your Amazon Relational Database Service (Amazon RDS) instances are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
SI-12 The organization handles and retains information within the information system and information output from the system in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and operational requirements.

ebs-in-backup-plan

To help with data back-up processes, ensure your Amazon Elastic Block Store (Amazon EBS) volumes are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
SI-12 The organization handles and retains information within the information system and information output from the system in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and operational requirements.

efs-in-backup-plan

To help with data back-up processes, ensure your Amazon Elastic File System (Amazon EFS) file systems are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
SI-12 The organization handles and retains information within the information system and information output from the system in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and operational requirements.

dynamodb-in-backup-plan

To help with data back-up processes, ensure your Amazon DynamoDB tables are a part of an AWS Backup plan. AWS Backup is a fully managed backup service with a policy-based backup solution. This solution simplifies your backup management and enables you to meet your business and regulatory backup compliance requirements.
SI-12 The organization handles and retains information within the information system and information output from the system in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, standards, and operational requirements.

cw-loggroup-retention-period-check

Ensure a minimum duration of event log data is retained for your log groups to help with troubleshooting and forensics investigations. The lack of available past event log data makes it difficult to reconstruct and identify potentially malicious events. This rule allows you to optionally set the MinRetentionTime (FedRAMP Parameter: 90), as required by your organization's policies.

Template

The template is available on GitHub: Operational Best Practices for FedRAMP(Moderate).