選取您的 Cookie 偏好設定

我們使用提供自身網站和服務所需的基本 Cookie 和類似工具。我們使用效能 Cookie 收集匿名統計資料,以便了解客戶如何使用我們的網站並進行改進。基本 Cookie 無法停用,但可以按一下「自訂」或「拒絕」以拒絕效能 Cookie。

如果您同意,AWS 與經核准的第三方也會使用 Cookie 提供實用的網站功能、記住您的偏好設定,並顯示相關內容,包括相關廣告。若要接受或拒絕所有非必要 Cookie,請按一下「接受」或「拒絕」。若要進行更詳細的選擇,請按一下「自訂」。

偵測不適當的映像

焦點模式
偵測不適當的映像 - Amazon Rekognition

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

本文為英文版的機器翻譯版本,如內容有任何歧義或不一致之處,概以英文版為準。

您可以使用該DetectModerationLabels操作來確定圖像是否包含不適當或令人反感的內容。如需 Amazon Rekognition 中的協調標籤清單,請參閱使用影像和影片協調。APIs

偵測映像中的不適當內容

映像的格式必須是 .jpg 或 .png。您可以用映像位元組陣列 (Base64 編碼映像位元組) 的方式提供輸入映像,或指定 Amazon S3 物件。在這些程序中,您會將映像 (.jpg 或 .png) 上傳至 S3 儲存貯體。

若要執行這些程序,您必須 AWS SDK安裝適當的 AWS CLI 或。如需詳細資訊,請參閱Amazon Rekognition 入門。您使用的AWS帳戶必須具有 Amazon Reko API gnition 的存取權限。如需詳細資訊,請參閱 Amazon Rekognition 定義的動作

偵測影像中的協調標籤 () SDK
  1. 如果您尚未執行:

    1. 建立或更新具有 AmazonRekognitionFullAccessAmazonS3ReadOnlyAccess 權限的​使用者。如需詳細資訊,請參閱步驟 1:設定AWS帳戶並建立使用者

    2. 安裝並設定 AWS CLI 和 AWS SDKs. 如需詳細資訊,請參閱步驟 2:設定 AWS CLI 以及 AWS SDKs

  2. 將映像上傳至您的 S3 儲存貯體。

    如需指示說明,請參閱《Amazon Simple Storage Service 使用者指南》中的上傳物件至 Amazon S3

  3. 使用下列範例來呼叫 DetectModerationLabels 操作。

    Java

    此範例輸出偵測到的不適當內容標籤名稱、信心度以及偵測到的管制標籤的父標籤。

    bucketphoto 的值取代為您在步驟 2 中所使用的 S3 儲存貯體名稱與映像檔案名稱。

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) package aws.example.rekognition.image; import com.amazonaws.services.rekognition.AmazonRekognition; import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder; import com.amazonaws.services.rekognition.model.AmazonRekognitionException; import com.amazonaws.services.rekognition.model.DetectModerationLabelsRequest; import com.amazonaws.services.rekognition.model.DetectModerationLabelsResult; import com.amazonaws.services.rekognition.model.Image; import com.amazonaws.services.rekognition.model.ModerationLabel; import com.amazonaws.services.rekognition.model.S3Object; import java.util.List; public class DetectModerationLabels { public static void main(String[] args) throws Exception { String photo = "input.jpg"; String bucket = "bucket"; AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.defaultClient(); DetectModerationLabelsRequest request = new DetectModerationLabelsRequest() .withImage(new Image().withS3Object(new S3Object().withName(photo).withBucket(bucket))) .withMinConfidence(60F); try { DetectModerationLabelsResult result = rekognitionClient.detectModerationLabels(request); List<ModerationLabel> labels = result.getModerationLabels(); System.out.println("Detected labels for " + photo); for (ModerationLabel label : labels) { System.out.println("Label: " + label.getName() + "\n Confidence: " + label.getConfidence().toString() + "%" + "\n Parent:" + label.getParentName()); } } catch (AmazonRekognitionException e) { e.printStackTrace(); } } }
    Java V2

    此代碼取自 AWS 文檔SDK示例 GitHub 存儲庫。請參閱此處的完整範例。

    //snippet-start:[rekognition.java2.recognize_video_text.import] //snippet-start:[rekognition.java2.detect_mod_labels.import] import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.core.SdkBytes; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.Image; import software.amazon.awssdk.services.rekognition.model.DetectModerationLabelsRequest; import software.amazon.awssdk.services.rekognition.model.DetectModerationLabelsResponse; import software.amazon.awssdk.services.rekognition.model.ModerationLabel; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.InputStream; import java.util.List; //snippet-end:[rekognition.java2.detect_mod_labels.import] /** * Before running this Java V2 code example, set up your development environment, including your credentials. * * For more information, see the following documentation topic: * * https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/get-started.html */ public class ModerateLabels { public static void main(String[] args) { final String usage = "\n" + "Usage: " + " <sourceImage>\n\n" + "Where:\n" + " sourceImage - The path to the image (for example, C:\\AWS\\pic1.png). \n\n"; if (args.length < 1) { System.out.println(usage); System.exit(1); } String sourceImage = args[0]; Region region = Region.US_WEST_2; RekognitionClient rekClient = RekognitionClient.builder() .region(region) .credentialsProvider(ProfileCredentialsProvider.create("profile-name")) .build(); detectModLabels(rekClient, sourceImage); rekClient.close(); } // snippet-start:[rekognition.java2.detect_mod_labels.main] public static void detectModLabels(RekognitionClient rekClient, String sourceImage) { try { InputStream sourceStream = new FileInputStream(sourceImage); SdkBytes sourceBytes = SdkBytes.fromInputStream(sourceStream); Image souImage = Image.builder() .bytes(sourceBytes) .build(); DetectModerationLabelsRequest moderationLabelsRequest = DetectModerationLabelsRequest.builder() .image(souImage) .minConfidence(60F) .build(); DetectModerationLabelsResponse moderationLabelsResponse = rekClient.detectModerationLabels(moderationLabelsRequest); List<ModerationLabel> labels = moderationLabelsResponse.moderationLabels(); System.out.println("Detected labels for image"); for (ModerationLabel label : labels) { System.out.println("Label: " + label.name() + "\n Confidence: " + label.confidence().toString() + "%" + "\n Parent:" + label.parentName()); } } catch (RekognitionException | FileNotFoundException e) { e.printStackTrace(); System.exit(1); } } // snippet-end:[rekognition.java2.detect_mod_labels.main]
    AWS CLI

    此 AWS CLI 指令會顯示detect-moderation-labelsCLI作業的JSON輸出。

    bucketinput.jpg 取代為您在步驟 2 中所使用的 S3 儲存貯體名稱與映像檔案名稱。使用您開發人員設定檔的名稱取代 profile_name 的值。若要使用轉接器,請提供專案版本給project-version參數。ARN

    aws rekognition detect-moderation-labels --image "{S3Object:{Bucket:<bucket-name>,Name:<image-name>}}" \ --profile profile-name \ --project-version "ARN"

    如果您在 Windows 裝置CLI上存取,請使用雙引號而非單引號,並以反斜線 (即\) 逸出內部雙引號,以解決您可能遇到的任何剖析器錯誤。例如,請參閱下列內容:

    aws rekognition detect-moderation-labels --image "{\"S3Object\":{\"Bucket\":\"bucket-name\",\"Name\":\"image-name\"}}" \ --profile profile-name
    Python

    此範例輸出偵測到的不適當或令人反感的內容標籤名稱、信心度以及偵測到的不安全內容標籤的父標籤。

    在函數 main 中,將 bucketphoto 的值取代為您在步驟 2 中所使用的 S3 儲存貯體名稱與映像檔案名稱。將建立 Rekognition 工作階段的行中 profile_name 值取代為您開發人員設定檔的名稱。

    #Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. #PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) import boto3 def moderate_image(photo, bucket): session = boto3.Session(profile_name='profile-name') client = session.client('rekognition') response = client.detect_moderation_labels(Image={'S3Object':{'Bucket':bucket,'Name':photo}}) print('Detected labels for ' + photo) for label in response['ModerationLabels']: print (label['Name'] + ' : ' + str(label['Confidence'])) print (label['ParentName']) return len(response['ModerationLabels']) def main(): photo='image-name' bucket='bucket-name' label_count=moderate_image(photo, bucket) print("Labels detected: " + str(label_count)) if __name__ == "__main__": main()
    .NET

    此範例輸出偵測到的令人反感的內容標籤名稱、信心度以及偵測到的管制標籤的父標籤。

    bucketphoto 的值取代為您在步驟 2 中所使用的 S3 儲存貯體名稱與映像檔案名稱。

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) using System; using Amazon.Rekognition; using Amazon.Rekognition.Model; public class DetectModerationLabels { public static void Example() { String photo = "input.jpg"; String bucket = "bucket"; AmazonRekognitionClient rekognitionClient = new AmazonRekognitionClient(); DetectModerationLabelsRequest detectModerationLabelsRequest = new DetectModerationLabelsRequest() { Image = new Image() { S3Object = new S3Object() { Name = photo, Bucket = bucket }, }, MinConfidence = 60F }; try { DetectModerationLabelsResponse detectModerationLabelsResponse = rekognitionClient.DetectModerationLabels(detectModerationLabelsRequest); Console.WriteLine("Detected labels for " + photo); foreach (ModerationLabel label in detectModerationLabelsResponse.ModerationLabels) Console.WriteLine("Label: {0}\n Confidence: {1}\n Parent: {2}", label.Name, label.Confidence, label.ParentName); } catch (Exception e) { Console.WriteLine(e.Message); } } }

    此範例輸出偵測到的不適當內容標籤名稱、信心度以及偵測到的管制標籤的父標籤。

    bucketphoto 的值取代為您在步驟 2 中所使用的 S3 儲存貯體名稱與映像檔案名稱。

    //Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. //PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-developer-guide/blob/master/LICENSE-SAMPLECODE.) package aws.example.rekognition.image; import com.amazonaws.services.rekognition.AmazonRekognition; import com.amazonaws.services.rekognition.AmazonRekognitionClientBuilder; import com.amazonaws.services.rekognition.model.AmazonRekognitionException; import com.amazonaws.services.rekognition.model.DetectModerationLabelsRequest; import com.amazonaws.services.rekognition.model.DetectModerationLabelsResult; import com.amazonaws.services.rekognition.model.Image; import com.amazonaws.services.rekognition.model.ModerationLabel; import com.amazonaws.services.rekognition.model.S3Object; import java.util.List; public class DetectModerationLabels { public static void main(String[] args) throws Exception { String photo = "input.jpg"; String bucket = "bucket"; AmazonRekognition rekognitionClient = AmazonRekognitionClientBuilder.defaultClient(); DetectModerationLabelsRequest request = new DetectModerationLabelsRequest() .withImage(new Image().withS3Object(new S3Object().withName(photo).withBucket(bucket))) .withMinConfidence(60F); try { DetectModerationLabelsResult result = rekognitionClient.detectModerationLabels(request); List<ModerationLabel> labels = result.getModerationLabels(); System.out.println("Detected labels for " + photo); for (ModerationLabel label : labels) { System.out.println("Label: " + label.getName() + "\n Confidence: " + label.getConfidence().toString() + "%" + "\n Parent:" + label.getParentName()); } } catch (AmazonRekognitionException e) { e.printStackTrace(); } } }

DetectModerationLabels 操作請求

DetectModerationLabels 的輸入是映像。在此範例JSON輸入中,來源映像檔是從 Amazon S3 儲存貯體載入。 MinConfidence是 Amazon Rekognition 影像必須具備偵測到的標籤準確度,才能在回應中傳回的最低可信度。

{ "Image": { "S3Object": { "Bucket": "bucket", "Name": "input.jpg" } }, "MinConfidence": 60 }

DetectModerationLabels 作業回應

DetectModerationLabels 可從 S3 儲存貯體擷取輸入映像,您也可以用映像位元組的方式提供輸入映像。下列範例是來自 DetectModerationLabels 呼叫的回應。

在下列範例JSON回應中,請注意下列事項:

  • 不適當的映像偵測資訊:此範例會顯示映像中發現不當或冒犯性內容的標籤清單。此清單包含最上層標籤與映像中偵測到的每個第二層標籤。

    標籤:每個標籤都具有名稱、Amazon Rekognition 對標籤正確性估計的可信度,以及其父標籤的名稱。最上層標籤的父名稱為 ""

    標籤可信度:每個標籤都有一個介於 0 到 100 之間的可信度值,該值表示 Amazon Rekognition 对標籤正確性估计的可信度百分比。您可以指定要在API作業要求回應中傳回之標籤所需的信賴等級。

{ "ModerationLabels": [ { "Confidence": 99.44782257080078, "Name": "Smoking", "ParentName": "Drugs & Tobacco Paraphernalia & Use", "TaxonomyLevel": 3 }, { "Confidence": 99.44782257080078, "Name": "Drugs & Tobacco Paraphernalia & Use", "ParentName": "Drugs & Tobacco", "TaxonomyLevel": 2 }, { "Confidence": 99.44782257080078, "Name": "Drugs & Tobacco", "ParentName": "", "TaxonomyLevel": 1 } ], "ModerationModelVersion": "7.0", "ContentTypes": [ { "Confidence": 99.9999008178711, "Name": "Illustrated" } ] }
隱私權網站條款Cookie 偏好設定
© 2025, Amazon Web Services, Inc.或其附屬公司。保留所有權利。