Package software.amazon.awscdk.services.stepfunctions
AWS Step Functions Construct Library
The aws-cdk-lib/aws-stepfunctions
package contains constructs for building
serverless workflows using objects. Use this in conjunction with the
aws-cdk-lib/aws-stepfunctions-tasks
package, which contains classes used
to call other AWS services.
Defining a workflow looks like this (for the Step Functions Job Poller example):
Example
import software.amazon.awscdk.services.lambda.*; Function submitLambda; Function getStatusLambda; LambdaInvoke submitJob = LambdaInvoke.Builder.create(this, "Submit Job") .lambdaFunction(submitLambda) // Lambda's result is in the attribute `guid` .outputPath("$.guid") .build(); Wait waitX = Wait.Builder.create(this, "Wait X Seconds") .time(WaitTime.secondsPath("$.waitSeconds")) .build(); LambdaInvoke getStatus = LambdaInvoke.Builder.create(this, "Get Job Status") .lambdaFunction(getStatusLambda) // Pass just the field named "guid" into the Lambda, put the // Lambda's result in a field called "status" in the response .inputPath("$.guid") .outputPath("$.status") .build(); Fail jobFailed = Fail.Builder.create(this, "Job Failed") .cause("AWS Batch Job Failed") .error("DescribeJob returned FAILED") .build(); LambdaInvoke finalStatus = LambdaInvoke.Builder.create(this, "Get Final Job Status") .lambdaFunction(getStatusLambda) // Use "guid" field as input .inputPath("$.guid") .outputPath("$.Payload") .build(); Chain definition = submitJob.next(waitX).next(getStatus).next(new Choice(this, "Job Complete?").when(Condition.stringEquals("$.status", "FAILED"), jobFailed).when(Condition.stringEquals("$.status", "SUCCEEDED"), finalStatus).otherwise(waitX)); StateMachine.Builder.create(this, "StateMachine") .definitionBody(DefinitionBody.fromChainable(definition)) .timeout(Duration.minutes(5)) .comment("a super cool state machine") .build();
You can find more sample snippets and learn more about the service integrations
in the aws-cdk-lib/aws-stepfunctions-tasks
package.
State Machine
A stepfunctions.StateMachine
is a resource that takes a state machine
definition. The definition is specified by its start state, and encompasses
all states reachable from the start state:
Pass startState = new Pass(this, "StartState"); StateMachine.Builder.create(this, "StateMachine") .definitionBody(DefinitionBody.fromChainable(startState)) .build();
State machines are made up of a sequence of Steps, which represent different actions
taken in sequence. Some of these steps represent control flow (like Choice
, Map
and Wait
)
while others represent calls made against other AWS services (like LambdaInvoke
).
The second category are called Task
s and they can all be found in the module aws-stepfunctions-tasks
.
State machines execute using an IAM Role, which will automatically have all permissions added that are required to make all state machine tasks execute properly (for example, permissions to invoke any Lambda functions you add to your workflow). A role will be created by default, but you can supply an existing one as well.
Set the removalPolicy
prop to RemovalPolicy.RETAIN
if you want to retain the execution
history when CloudFormation deletes your state machine.
Alternatively you can specify an existing step functions definition by providing a string or a file that contains the ASL JSON.
StateMachine.Builder.create(this, "StateMachineFromString") .definitionBody(DefinitionBody.fromString("{\"StartAt\":\"Pass\",\"States\":{\"Pass\":{\"Type\":\"Pass\",\"End\":true}}}")) .build(); StateMachine.Builder.create(this, "StateMachineFromFile") .definitionBody(DefinitionBody.fromFile("./asl.json")) .build();
State Machine Data
An Execution represents each time the State Machine is run. Every Execution has State Machine Data: a JSON document containing keys and values that is fed into the state machine, gets modified by individual steps as the state machine progresses, and finally is produced as output.
By default, the entire Data object is passed into every state, and the return data of the step
becomes new the new Data object. This behavior can be modified by supplying values for inputPath
,
resultSelector
, resultPath
and outputPath
.
Manipulating state machine data using inputPath, resultSelector, resultPath and outputPath
These properties impact how each individual step interacts with the state machine data:
stateName
: the name of the state in the state machine definition. If not supplied, defaults to the construct id.inputPath
: the part of the data object that gets passed to the step (itemsPath
forMap
states)resultSelector
: the part of the step result that should be added to the state machine dataresultPath
: where in the state machine data the step result should be insertedoutputPath
: what part of the state machine data should be retainederrorPath
: the part of the data object that gets returned as the step errorcausePath
: the part of the data object that gets returned as the step cause
Their values should be a string indicating a JSON path into the State Machine Data object (like "$.MyKey"
). If absent, the values are treated as if they were "$"
, which means the entire object.
The following pseudocode shows how AWS Step Functions uses these parameters when executing a step:
// Schematically show how Step Functions evaluates functions. // [] represents indexing into an object by a using JSON path. input = state[inputPath] result = invoke_step(select_parameters(input)) state[resultPath] = result[resultSelector] state = state[outputPath]
Instead of a JSON path string, each of these paths can also have the special value JsonPath.DISCARD
, which causes the corresponding indexing expression to return an empty object ({}
). Effectively, that means there will be an empty input object, an empty result object, no effect on the state, or an empty state, respectively.
Some steps (mostly Tasks) have Parameters, which are selected differently. See the next section.
See the official documentation on input and output processing in Step Functions.
Passing Parameters to Tasks
Tasks take parameters, whose values can be taken from the State Machine Data object. For example, your workflow may want to start a CodeBuild with an environment variable that is taken from the State Machine data, or pass part of the State Machine Data into an AWS Lambda Function.
In the original JSON-based states language used by AWS Step Functions, you would
add .$
to the end of a key to indicate that a value needs to be interpreted as
a JSON path. In the CDK API you do not change the names of any keys. Instead, you
pass special values. There are 3 types of task inputs to consider:
- Tasks that accept a "payload" type of input (like AWS Lambda invocations, or posting messages to SNS topics or SQS queues), will take an object of type
TaskInput
, likeTaskInput.fromObject()
orTaskInput.fromJsonPathAt()
. - When tasks expect individual string or number values to customize their behavior, you can also pass a value constructed by
JsonPath.stringAt()
orJsonPath.numberAt()
. - When tasks expect strongly-typed resources and you want to vary the resource that is referenced based on a name from the State Machine Data, reference the resource as if it was external (using
JsonPath.stringAt()
). For example, for a Lambda function:Function.fromFunctionName(this, 'ReferencedFunction', JsonPath.stringAt('$.MyFunctionName'))
.
For example, to pass the value that's in the data key of OrderId
to a Lambda
function as you invoke it, use JsonPath.stringAt('$.OrderId')
, like so:
import software.amazon.awscdk.services.lambda.*; Function orderFn; LambdaInvoke submitJob = LambdaInvoke.Builder.create(this, "InvokeOrderProcessor") .lambdaFunction(orderFn) .payload(TaskInput.fromObject(Map.of( "OrderId", JsonPath.stringAt("$.OrderId")))) .build();
The following methods are available:
| Method | Purpose |
|--------|---------|
| JsonPath.stringAt('$.Field')
| reference a field, return the type as a string
. |
| JsonPath.listAt('$.Field')
| reference a field, return the type as a list of strings. |
| JsonPath.numberAt('$.Field')
| reference a field, return the type as a number. Use this for functions that expect a number argument. |
| JsonPath.objectAt('$.Field')
| reference a field, return the type as an IResolvable
. Use this for functions that expect an object argument. |
| JsonPath.entirePayload
| reference the entire data object (equivalent to a path of $
). |
| JsonPath.taskToken
| reference the Task Token, used for integration patterns that need to run for a long time. |
| JsonPath.executionId
| reference the Execution Id field of the context object. |
| JsonPath.executionInput
| reference the Execution Input object of the context object. |
| JsonPath.executionName
| reference the Execution Name field of the context object. |
| JsonPath.executionRoleArn
| reference the Execution RoleArn field of the context object. |
| JsonPath.executionStartTime
| reference the Execution StartTime field of the context object. |
| JsonPath.stateEnteredTime
| reference the State EnteredTime field of the context object. |
| JsonPath.stateName
| reference the State Name field of the context object. |
| JsonPath.stateRetryCount
| reference the State RetryCount field of the context object. |
| JsonPath.stateMachineId
| reference the StateMachine Id field of the context object. |
| JsonPath.stateMachineName
| reference the StateMachine Name field of the context object. |
You can also call intrinsic functions using the methods on JsonPath
:
| Method | Purpose |
|--------|---------|
| JsonPath.array(JsonPath.stringAt('$.Field'), ...)
| make an array from other elements. |
| JsonPath.arrayPartition(JsonPath.listAt('$.inputArray'), 4)
| partition an array. |
| JsonPath.arrayContains(JsonPath.listAt('$.inputArray'), 5)
| determine if a specific value is present in an array. |
| JsonPath.arrayRange(1, 9, 2)
| create a new array containing a specific range of elements. |
| JsonPath.arrayGetItem(JsonPath.listAt('$.inputArray'), 5)
| get a specified index's value in an array. |
| JsonPath.arrayLength(JsonPath.listAt('$.inputArray'))
| get the length of an array. |
| JsonPath.arrayUnique(JsonPath.listAt('$.inputArray'))
| remove duplicate values from an array. |
| JsonPath.base64Encode(JsonPath.stringAt('$.input'))
| encode data based on MIME Base64 encoding scheme. |
| JsonPath.base64Decode(JsonPath.stringAt('$.base64'))
| decode data based on MIME Base64 decoding scheme. |
| JsonPath.hash(JsonPath.objectAt('$.Data'), JsonPath.stringAt('$.Algorithm'))
| calculate the hash value of a given input. |
| JsonPath.jsonMerge(JsonPath.objectAt('$.Obj1'), JsonPath.objectAt('$.Obj2'))
| merge two JSON objects into a single object. |
| JsonPath.stringToJson(JsonPath.stringAt('$.ObjStr'))
| parse a JSON string to an object |
| JsonPath.jsonToString(JsonPath.objectAt('$.Obj'))
| stringify an object to a JSON string |
| JsonPath.mathRandom(1, 999)
| return a random number. |
| JsonPath.mathAdd(JsonPath.numberAt('$.value1'), JsonPath.numberAt('$.step'))
| return the sum of two numbers. |
| JsonPath.stringSplit(JsonPath.stringAt('$.inputString'), JsonPath.stringAt('$.splitter'))
| split a string into an array of values. |
| JsonPath.uuid()
| return a version 4 universally unique identifier (v4 UUID). |
| JsonPath.format('The value is {}.', JsonPath.stringAt('$.Value'))
| insert elements into a format string. |
Amazon States Language
This library comes with a set of classes that model the Amazon States Language. The following State classes are supported:
An arbitrary JSON object (specified at execution start) is passed from state to state and transformed during the execution of the workflow. For more information, see the States Language spec.
Task
A Task
represents some work that needs to be done. Do not use the Task
class directly.
Instead, use one of the classes in the aws-cdk-lib/aws-stepfunctions-tasks
module,
which provide a much more ergonomic way to integrate with various AWS services.
Pass
A Pass
state passes its input to its output, without performing work.
Pass states are useful when constructing and debugging state machines.
The following example injects some fixed data into the state machine through
the result
field. The result
field will be added to the input and the result
will be passed as the state's output.
// Makes the current JSON state { ..., "subObject": { "hello": "world" } } Pass pass = Pass.Builder.create(this, "Add Hello World") .result(Result.fromObject(Map.of("hello", "world"))) .resultPath("$.subObject") .build(); // Set the next state Pass nextState = new Pass(this, "NextState"); pass.next(nextState);
The Pass
state also supports passing key-value pairs as input. Values can
be static, or selected from the input with a path.
The following example filters the greeting
field from the state input
and also injects a field called otherData
.
Pass pass = Pass.Builder.create(this, "Filter input and inject data") .stateName("my-pass-state") // the custom state name for the Pass state, defaults to 'Filter input and inject data' as the state name .parameters(Map.of( // input to the pass state "input", JsonPath.stringAt("$.input.greeting"), "otherData", "some-extra-stuff")) .build();
The object specified in parameters
will be the input of the Pass
state.
Since neither Result
nor ResultPath
are supplied, the Pass
state copies
its input through to its output.
Learn more about the Pass state
Wait
A Wait
state waits for a given number of seconds, or until the current time
hits a particular time. The time to wait may be taken from the execution's JSON
state.
// Wait until it's the time mentioned in the the state object's "triggerTime" // field. Wait wait = Wait.Builder.create(this, "Wait For Trigger Time") .time(WaitTime.timestampPath("$.triggerTime")) .build(); // Set the next state Pass startTheWork = new Pass(this, "StartTheWork"); wait.next(startTheWork);
Choice
A Choice
state can take a different path through the workflow based on the
values in the execution's JSON state:
Choice choice = new Choice(this, "Did it work?"); // Add conditions with .when() Pass successState = new Pass(this, "SuccessState"); Pass failureState = new Pass(this, "FailureState"); choice.when(Condition.stringEquals("$.status", "SUCCESS"), successState); choice.when(Condition.numberGreaterThan("$.attempts", 5), failureState); // Use .otherwise() to indicate what should be done if none of the conditions match Pass tryAgainState = new Pass(this, "TryAgainState"); choice.otherwise(tryAgainState);
If you want to temporarily branch your workflow based on a condition, but have
all branches come together and continuing as one (similar to how an if ... then ... else
works in a programming language), use the .afterwards()
method:
Choice choice = new Choice(this, "What color is it?"); Pass handleBlueItem = new Pass(this, "HandleBlueItem"); Pass handleRedItem = new Pass(this, "HandleRedItem"); Pass handleOtherItemColor = new Pass(this, "HanldeOtherItemColor"); choice.when(Condition.stringEquals("$.color", "BLUE"), handleBlueItem); choice.when(Condition.stringEquals("$.color", "RED"), handleRedItem); choice.otherwise(handleOtherItemColor); // Use .afterwards() to join all possible paths back together and continue Pass shipTheItem = new Pass(this, "ShipTheItem"); choice.afterwards().next(shipTheItem);
You can add comments to Choice
states as well as conditions that use choice.when
.
Choice choice = Choice.Builder.create(this, "What color is it?") .comment("color comment") .build(); Pass handleBlueItem = new Pass(this, "HandleBlueItem"); Pass handleOtherItemColor = new Pass(this, "HanldeOtherItemColor"); choice.when(Condition.stringEquals("$.color", "BLUE"), handleBlueItem, ChoiceTransitionOptions.builder() .comment("blue item comment") .build()); choice.otherwise(handleOtherItemColor);
If your Choice
doesn't have an otherwise()
and none of the conditions match
the JSON state, a NoChoiceMatched
error will be thrown. Wrap the state machine
in a Parallel
state if you want to catch and recover from this.
Available Conditions
see step function comparison operators
Condition.isPresent
- matches if a json path is presentCondition.isNotPresent
- matches if a json path is not presentCondition.isString
- matches if a json path contains a stringCondition.isNotString
- matches if a json path is not a stringCondition.isNumeric
- matches if a json path is numericCondition.isNotNumeric
- matches if a json path is not numericCondition.isBoolean
- matches if a json path is booleanCondition.isNotBoolean
- matches if a json path is not booleanCondition.isTimestamp
- matches if a json path is a timestampCondition.isNotTimestamp
- matches if a json path is not a timestampCondition.isNotNull
- matches if a json path is not nullCondition.isNull
- matches if a json path is nullCondition.booleanEquals
- matches if a boolean field has a given valueCondition.booleanEqualsJsonPath
- matches if a boolean field equals a value in a given mapping pathCondition.stringEqualsJsonPath
- matches if a string field equals a given mapping pathCondition.stringEquals
- matches if a field equals a string valueCondition.stringLessThan
- matches if a string field sorts before a given valueCondition.stringLessThanJsonPath
- matches if a string field sorts before a value at given mapping pathCondition.stringLessThanEquals
- matches if a string field sorts equal to or before a given valueCondition.stringLessThanEqualsJsonPath
- matches if a string field sorts equal to or before a given mappingCondition.stringGreaterThan
- matches if a string field sorts after a given valueCondition.stringGreaterThanJsonPath
- matches if a string field sorts after a value at a given mapping pathCondition.stringGreaterThanEqualsJsonPath
- matches if a string field sorts after or equal to value at a given mapping pathCondition.stringGreaterThanEquals
- matches if a string field sorts after or equal to a given valueCondition.numberEquals
- matches if a numeric field has the given valueCondition.numberEqualsJsonPath
- matches if a numeric field has the value in a given mapping pathCondition.numberLessThan
- matches if a numeric field is less than the given valueCondition.numberLessThanJsonPath
- matches if a numeric field is less than the value at the given mapping pathCondition.numberLessThanEquals
- matches if a numeric field is less than or equal to the given valueCondition.numberLessThanEqualsJsonPath
- matches if a numeric field is less than or equal to the numeric value at given mapping pathCondition.numberGreaterThan
- matches if a numeric field is greater than the given valueCondition.numberGreaterThanJsonPath
- matches if a numeric field is greater than the value at a given mapping pathCondition.numberGreaterThanEquals
- matches if a numeric field is greater than or equal to the given valueCondition.numberGreaterThanEqualsJsonPath
- matches if a numeric field is greater than or equal to the value at a given mapping pathCondition.timestampEquals
- matches if a timestamp field is the same time as the given timestampCondition.timestampEqualsJsonPath
- matches if a timestamp field is the same time as the timestamp at a given mapping pathCondition.timestampLessThan
- matches if a timestamp field is before the given timestampCondition.timestampLessThanJsonPath
- matches if a timestamp field is before the timestamp at a given mapping pathCondition.timestampLessThanEquals
- matches if a timestamp field is before or equal to the given timestampCondition.timestampLessThanEqualsJsonPath
- matches if a timestamp field is before or equal to the timestamp at a given mapping pathCondition.timestampGreaterThan
- matches if a timestamp field is after the timestamp at a given mapping pathCondition.timestampGreaterThanJsonPath
- matches if a timestamp field is after the timestamp at a given mapping pathCondition.timestampGreaterThanEquals
- matches if a timestamp field is after or equal to the given timestampCondition.timestampGreaterThanEqualsJsonPath
- matches if a timestamp field is after or equal to the timestamp at a given mapping pathCondition.stringMatches
- matches if a field matches a string pattern that can contain a wild card () e.g: log-.txt or LATEST. No other characters other than "" have any special meaning - * can be escaped: \
Parallel
A Parallel
state executes one or more subworkflows in parallel. It can also
be used to catch and recover from errors in subworkflows.
Parallel parallel = new Parallel(this, "Do the work in parallel"); // Add branches to be executed in parallel Pass shipItem = new Pass(this, "ShipItem"); Pass sendInvoice = new Pass(this, "SendInvoice"); Pass restock = new Pass(this, "Restock"); parallel.branch(shipItem); parallel.branch(sendInvoice); parallel.branch(restock); // Retry the whole workflow if something goes wrong with exponential backoff parallel.addRetry(RetryProps.builder() .maxAttempts(1) .maxDelay(Duration.seconds(5)) .jitterStrategy(JitterType.FULL) .build()); // How to recover from errors Pass sendFailureNotification = new Pass(this, "SendFailureNotification"); parallel.addCatch(sendFailureNotification); // What to do in case everything succeeded Pass closeOrder = new Pass(this, "CloseOrder"); parallel.next(closeOrder);
Succeed
Reaching a Succeed
state terminates the state machine execution with a
successful status.
Succeed success = new Succeed(this, "We did it!");
Fail
Reaching a Fail
state terminates the state machine execution with a
failure status. The fail state should report the reason for the failure.
Failures can be caught by encompassing Parallel
states.
Fail fail = Fail.Builder.create(this, "Fail") .error("WorkflowFailure") .cause("Something went wrong") .build();
The Fail
state also supports returning dynamic values as the error and cause that are selected from the input with a path.
Fail fail = Fail.Builder.create(this, "Fail") .errorPath(JsonPath.stringAt("$.someError")) .causePath(JsonPath.stringAt("$.someCause")) .build();
You can also use an intrinsic function that returns a string to specify CausePath and ErrorPath. The available functions include States.Format, States.JsonToString, States.ArrayGetItem, States.Base64Encode, States.Base64Decode, States.Hash, and States.UUID.
Fail fail = Fail.Builder.create(this, "Fail") .errorPath(JsonPath.format("error: {}.", JsonPath.stringAt("$.someError"))) .causePath("States.Format('cause: {}.', $.someCause)") .build();
Map
A Map
state can be used to run a set of steps for each element of an input array.
A Map
state will execute the same steps for multiple entries of an array in the state input.
While the Parallel
state executes multiple branches of steps using the same input, a Map
state will
execute the same steps for multiple entries of an array in the state input.
Map map = Map.Builder.create(this, "Map State") .maxConcurrency(1) .itemsPath(JsonPath.stringAt("$.inputForMap")) .itemSelector(Map.of( "item", JsonPath.stringAt("$.Map.Item.Value"))) .resultPath("$.mapOutput") .build(); // The Map iterator can contain a IChainable, which can be an individual or multiple steps chained together. // Below example is with a Choice and Pass step Choice choice = new Choice(this, "Choice"); Condition condition1 = Condition.stringEquals("$.item.status", "SUCCESS"); Pass step1 = new Pass(this, "Step1"); Pass step2 = new Pass(this, "Step2"); Pass finish = new Pass(this, "Finish"); Chain definition = choice.when(condition1, step1).otherwise(step2).afterwards().next(finish); map.itemProcessor(definition);
To define a distributed Map
state set itemProcessors
mode to ProcessorMode.DISTRIBUTED
.
An executionType
must be specified for the distributed Map
workflow.
Map map = Map.Builder.create(this, "Map State") .maxConcurrency(1) .itemsPath(JsonPath.stringAt("$.inputForMap")) .itemSelector(Map.of( "item", JsonPath.stringAt("$.Map.Item.Value"))) .resultPath("$.mapOutput") .build(); map.itemProcessor(new Pass(this, "Pass State"), ProcessorConfig.builder() .mode(ProcessorMode.DISTRIBUTED) .executionType(ProcessorType.STANDARD) .build());
Visit Using Map state in Distributed mode to orchestrate large-scale parallel workloads for more details.
Distributed Map
Step Functions provides a high-concurrency mode for the Map state known as Distributed mode. In this mode, the Map state can accept input from large-scale Amazon S3 data sources. For example, your input can be a JSON or CSV file stored in an Amazon S3 bucket, or a JSON array passed from a previous step in the workflow. A Map state set to Distributed is known as a Distributed Map state. In this mode, the Map state runs each iteration as a child workflow execution, which enables high concurrency of up to 10,000 parallel child workflow executions. Each child workflow execution has its own, separate execution history from that of the parent workflow.
Use the Map state in Distributed mode when you need to orchestrate large-scale parallel workloads that meet any combination of the following conditions:
- The size of your dataset exceeds 256 KB.
- The workflow's execution event history exceeds 25,000 entries.
- You need a concurrency of more than 40 parallel iterations.
A DistributedMap
state can be used to run a set of steps for each element of an input array with high concurrency.
A DistributedMap
state will execute the same steps for multiple entries of an array in the state input or from S3 objects.
DistributedMap distributedMap = DistributedMap.Builder.create(this, "Distributed Map State") .maxConcurrency(1) .itemsPath(JsonPath.stringAt("$.inputForMap")) .build(); distributedMap.itemProcessor(new Pass(this, "Pass State"));
DistributedMap
supports various input source types to determine a list of objects to iterate over:
- JSON array from the JSON state input
- By default,
DistributedMap
assumes whole JSON state input is an JSON array and iterates over it:
/** * JSON state input: * [ * "item1", * "item2" * ] */ DistributedMap distributedMap = new DistributedMap(this, "DistributedMap"); distributedMap.itemProcessor(new Pass(this, "Pass"));
- When input source is present at a specific path in JSON state input, then
itemsPath
can be utilised to configure the iterator source.
/** * JSON state input: * { * "distributedMapItemList": [ * "item1", * "item2" * ] * } */ DistributedMap distributedMap = DistributedMap.Builder.create(this, "DistributedMap") .itemsPath("$.distributedMapItemList") .build(); distributedMap.itemProcessor(new Pass(this, "Pass"));
- By default,
- Objects in a S3 bucket with an optional prefix.
- When
DistributedMap
is required to iterate over objects stored in a S3 bucket, then an object ofS3ObjectsItemReader
can be passed toitemReader
to configure the iterator source as follows:
import software.amazon.awscdk.services.s3.*; /** * Tree view of bucket: * my-bucket * | * +--item1 * | * +--otherItem * | * +--item2 * | * ... */ Bucket bucket = Bucket.Builder.create(this, "Bucket") .bucketName("my-bucket") .build(); DistributedMap distributedMap = DistributedMap.Builder.create(this, "DistributedMap") .itemReader(S3ObjectsItemReader.Builder.create() .bucket(bucket) .prefix("item") .build()) .build(); distributedMap.itemProcessor(new Pass(this, "Pass"));
- If information about
bucket
is only known while starting execution ofStateMachine
(dynamically or at run-time) via JSON state input:
/** * JSON state input: * { * "bucketName": "my-bucket", * "prefix": "item" * } */ DistributedMap distributedMap = DistributedMap.Builder.create(this, "DistributedMap") .itemReader(S3ObjectsItemReader.Builder.create() .bucketNamePath(JsonPath.stringAt("$.bucketName")) .prefix(JsonPath.stringAt("$.prefix")) .build()) .build(); distributedMap.itemProcessor(new Pass(this, "Pass"));
- Both
bucket
andbucketNamePath
are mutually exclusive.
- When
- JSON array in a JSON file stored in S3
- When
DistributedMap
is required to iterate over a JSON array stored in a JSON file in a S3 bucket, then an object ofS3JsonItemReader
can be passed toitemReader
to configure the iterator source as follows:
import software.amazon.awscdk.services.s3.*; /** * Tree view of bucket: * my-bucket * | * +--input.json * | * ... * * File content of input.json: * [ * "item1", * "item2" * ] */ Bucket bucket = Bucket.Builder.create(this, "Bucket") .bucketName("my-bucket") .build(); DistributedMap distributedMap = DistributedMap.Builder.create(this, "DistributedMap") .itemReader(S3JsonItemReader.Builder.create() .bucket(bucket) .key("input.json") .build()) .build(); distributedMap.itemProcessor(new Pass(this, "Pass"));
- If information about
bucket
is only known while starting execution ofStateMachine
(dynamically or at run-time) via state input:
/** * JSON state input: * { * "bucketName": "my-bucket", * "key": "input.json" * } */ DistributedMap distributedMap = DistributedMap.Builder.create(this, "DistributedMap") .itemReader(S3JsonItemReader.Builder.create() .bucketNamePath(JsonPath.stringAt("$.bucketName")) .key(JsonPath.stringAt("$.key")) .build()) .build(); distributedMap.itemProcessor(new Pass(this, "Pass"));
- When
- CSV file stored in S3
- S3 inventory manifest stored in S3
Map states in Distributed mode also support writing results of the iterator to an S3 bucket and optional prefix. Use a ResultWriter
object provided via the optional resultWriter
property to configure which S3 location iterator results will be written. The default behavior id resultWriter
is omitted is to use the state output payload. However, if the iterator results are larger than the 256 kb limit for Step Functions payloads then the State Machine will fail.
import software.amazon.awscdk.services.s3.*; // create a bucket Bucket bucket = new Bucket(this, "Bucket"); DistributedMap distributedMap = DistributedMap.Builder.create(this, "Distributed Map State") .resultWriter(ResultWriter.Builder.create() .bucket(bucket) .prefix("my-prefix") .build()) .build(); distributedMap.itemProcessor(new Pass(this, "Pass State"));
If you want to specify the execution type for the ItemProcessor in the DistributedMap, you must set the mapExecutionType
property in the DistributedMap
class. When using the DistributedMap
class, the ProcessorConfig.executionType
property is ignored.
In the following example, the execution type for the ItemProcessor in the DistributedMap is set to EXPRESS
based on the value specified for mapExecutionType
.
DistributedMap distributedMap = DistributedMap.Builder.create(this, "DistributedMap") .mapExecutionType(StateMachineType.EXPRESS) .build(); distributedMap.itemProcessor(new Pass(this, "Pass"), ProcessorConfig.builder() .mode(ProcessorMode.DISTRIBUTED) .executionType(ProcessorType.STANDARD) .build());
Custom State
It's possible that the high-level constructs for the states or stepfunctions-tasks
do not have
the states or service integrations you are looking for. The primary reasons for this lack of
functionality are:
- A service integration is available through Amazon States Language, but not available as construct classes in the CDK.
- The state or state properties are available through Step Functions, but are not configurable through constructs
If a feature is not available, a CustomState
can be used to supply any Amazon States Language
JSON-based object as the state definition.
Code Snippets are available and can be plugged in as the state definition.
Custom states can be chained together with any of the other states to create your state machine
definition. You will also need to provide any permissions that are required to the role
that
the State Machine uses.
The Retry and Catch fields are available for error handling.
You can configure the Retry field by defining it in the JSON object or by adding it using the addRetry
method.
However, the Catch field cannot be configured by defining it in the JSON object, so it must be added using the addCatch
method.
The following example uses the DynamoDB
service integration to insert data into a DynamoDB table.
import software.amazon.awscdk.services.dynamodb.*; // create a table Table table = Table.Builder.create(this, "montable") .partitionKey(Attribute.builder() .name("id") .type(AttributeType.STRING) .build()) .build(); Pass finalStatus = new Pass(this, "final step"); // States language JSON to put an item into DynamoDB // snippet generated from https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-code-snippet.html#tutorial-code-snippet-1 Map<String, Object> stateJson = Map.of( "Type", "Task", "Resource", "arn:aws:states:::dynamodb:putItem", "Parameters", Map.of( "TableName", table.getTableName(), "Item", Map.of( "id", Map.of( "S", "MyEntry"))), "ResultPath", null); // custom state which represents a task to insert data into DynamoDB CustomState custom = CustomState.Builder.create(this, "my custom task") .stateJson(stateJson) .build(); // catch errors with addCatch Pass errorHandler = new Pass(this, "handle failure"); custom.addCatch(errorHandler); // retry the task if something goes wrong custom.addRetry(RetryProps.builder() .errors(List.of(Errors.ALL)) .interval(Duration.seconds(10)) .maxAttempts(5) .build()); Chain chain = Chain.start(custom).next(finalStatus); StateMachine sm = StateMachine.Builder.create(this, "StateMachine") .definitionBody(DefinitionBody.fromChainable(chain)) .timeout(Duration.seconds(30)) .comment("a super cool state machine") .build(); // don't forget permissions. You need to assign them table.grantWriteData(sm);
Task Chaining
To make defining work flows as convenient (and readable in a top-to-bottom way)
as writing regular programs, it is possible to chain most methods invocations.
In particular, the .next()
method can be repeated. The result of a series of
.next()
calls is called a Chain, and can be used when defining the jump
targets of Choice.on
or Parallel.branch
:
Pass step1 = new Pass(this, "Step1"); Pass step2 = new Pass(this, "Step2"); Pass step3 = new Pass(this, "Step3"); Pass step4 = new Pass(this, "Step4"); Pass step5 = new Pass(this, "Step5"); Pass step6 = new Pass(this, "Step6"); Pass step7 = new Pass(this, "Step7"); Pass step8 = new Pass(this, "Step8"); Pass step9 = new Pass(this, "Step9"); Pass step10 = new Pass(this, "Step10"); Choice choice = new Choice(this, "Choice"); Condition condition1 = Condition.stringEquals("$.status", "SUCCESS"); Parallel parallel = new Parallel(this, "Parallel"); Pass finish = new Pass(this, "Finish"); Chain definition = step1.next(step2).next(choice.when(condition1, step3.next(step4).next(step5)).otherwise(step6).afterwards()).next(parallel.branch(step7.next(step8)).branch(step9.next(step10))).next(finish); StateMachine.Builder.create(this, "StateMachine") .definitionBody(DefinitionBody.fromChainable(definition)) .build();
If you don't like the visual look of starting a chain directly off the first
step, you can use Chain.start
:
Pass step1 = new Pass(this, "Step1"); Pass step2 = new Pass(this, "Step2"); Pass step3 = new Pass(this, "Step3"); Chain definition = Chain.start(step1).next(step2).next(step3);
Task Credentials
Tasks are executed using the State Machine's execution role. In some cases, e.g. cross-account access, an IAM role can be assumed by the State Machine's execution role to provide access to the resource.
This can be achieved by providing the optional credentials
property which allows using a fixed role or a json expression to resolve the role at runtime from the task's inputs.
import software.amazon.awscdk.services.lambda.*; Function submitLambda; Role iamRole; // use a fixed role for all task invocations TaskRole role = TaskRole.fromRole(iamRole); // or use a json expression to resolve the role at runtime based on task inputs //const role = sfn.TaskRole.fromRoleArnJsonPath('$.RoleArn'); LambdaInvoke submitJob = LambdaInvoke.Builder.create(this, "Submit Job") .lambdaFunction(submitLambda) .outputPath("$.Payload") // use credentials .credentials(Credentials.builder().role(role).build()) .build();
See the AWS documentation to learn more about AWS Step Functions support for accessing resources in other AWS accounts.
Service Integration Patterns
AWS Step functions integrate directly with other services, either through an optimised integration pattern, or through the AWS SDK.
Therefore, it is possible to change the integrationPattern
of services, to enable additional functionality of the said AWS Service:
import software.amazon.awscdk.services.glue.alpha.*; Job submitGlue; GlueStartJobRun submitJob = GlueStartJobRun.Builder.create(this, "Submit Job") .glueJobName(submitGlue.getJobName()) .integrationPattern(IntegrationPattern.RUN_JOB) .build();
State Machine Fragments
It is possible to define reusable (or abstracted) mini-state machines by
defining a construct that implements IChainable
, which requires you to define
two fields:
startState: State
, representing the entry point into this state machine.endStates: INextable[]
, representing the (one or more) states that outgoing transitions will be added to if you chain onto the fragment.
Since states will be named after their construct IDs, you may need to prefix the IDs of states if you plan to instantiate the same state machine fragment multiples times (otherwise all states in every instantiation would have the same name).
The class StateMachineFragment
contains some helper functions (like
prefixStates()
) to make it easier for you to do this. If you define your state
machine as a subclass of this, it will be convenient to use:
import software.amazon.awscdk.Stack; import software.constructs.Construct; import software.amazon.awscdk.services.stepfunctions.*; public class MyJobProps { private String jobFlavor; public String getJobFlavor() { return this.jobFlavor; } public MyJobProps jobFlavor(String jobFlavor) { this.jobFlavor = jobFlavor; return this; } } public class MyJob extends StateMachineFragment { public final State startState; public final INextable[] endStates; public MyJob(Construct parent, String id, MyJobProps props) { super(parent, id); Choice choice = new Choice(this, "Choice").when(Condition.stringEquals("$.branch", "left"), new Pass(this, "Left Branch")).when(Condition.stringEquals("$.branch", "right"), new Pass(this, "Right Branch")); // ... this.startState = choice; this.endStates = choice.afterwards().getEndStates(); } } public class MyStack extends Stack { public MyStack(Construct scope, String id) { super(scope, id); // Do 3 different variants of MyJob in parallel Parallel parallel = new Parallel(this, "All jobs").branch(new MyJob(this, "Quick", new MyJobProps().jobFlavor("quick")).prefixStates()).branch(new MyJob(this, "Medium", new MyJobProps().jobFlavor("medium")).prefixStates()).branch(new MyJob(this, "Slow", new MyJobProps().jobFlavor("slow")).prefixStates()); StateMachine.Builder.create(this, "MyStateMachine") .definitionBody(DefinitionBody.fromChainable(parallel)) .build(); } }
A few utility functions are available to parse state machine fragments.
State.findReachableStates
: Retrieve the list of states reachable from a given state.State.findReachableEndStates
: Retrieve the list of end or terminal states reachable from a given state.
Activity
Activities represent work that is done on some non-Lambda worker pool. The Step Functions workflow will submit work to this Activity, and a worker pool that you run yourself, probably on EC2, will pull jobs from the Activity and submit the results of individual jobs back.
You need the ARN to do so, so if you use Activities be sure to pass the Activity ARN into your worker pool:
Activity activity = new Activity(this, "Activity"); // Read this CloudFormation Output from your application and use it to poll for work on // the activity. // Read this CloudFormation Output from your application and use it to poll for work on // the activity. CfnOutput.Builder.create(this, "ActivityArn").value(activity.getActivityArn()).build();
Activity-Level Permissions
Granting IAM permissions to an activity can be achieved by calling the grant(principal, actions)
API:
Activity activity = new Activity(this, "Activity"); Role role = Role.Builder.create(this, "Role") .assumedBy(new ServicePrincipal("lambda.amazonaws.com")) .build(); activity.grant(role, "states:SendTaskSuccess");
This will grant the IAM principal the specified actions onto the activity.
Metrics
Task
object expose various metrics on the execution of that particular task. For example,
to create an alarm on a particular task failing:
Task task; Alarm.Builder.create(this, "TaskAlarm") .metric(task.metricFailed()) .threshold(1) .evaluationPeriods(1) .build();
There are also metrics on the complete state machine:
StateMachine stateMachine; Alarm.Builder.create(this, "StateMachineAlarm") .metric(stateMachine.metricFailed()) .threshold(1) .evaluationPeriods(1) .build();
And there are metrics on the capacity of all state machines in your account:
Alarm.Builder.create(this, "ThrottledAlarm") .metric(StateTransitionMetric.metricThrottledEvents()) .threshold(10) .evaluationPeriods(2) .build();
Error names
Step Functions identifies errors in the Amazon States Language using case-sensitive strings, known as error names.
The Amazon States Language defines a set of built-in strings that name well-known errors, all beginning with the States.
prefix.
States.ALL
- A wildcard that matches any known error name.States.Runtime
- An execution failed due to some exception that could not be processed. Often these are caused by errors at runtime, such as attempting to apply InputPath or OutputPath on a null JSON payload. AStates.Runtime
error is not retriable, and will always cause the execution to fail. A retry or catch onStates.ALL
will NOT catch States.Runtime errors.States.DataLimitExceeded
- A States.DataLimitExceeded exception will be thrown for the following:- When the output of a connector is larger than payload size quota.
- When the output of a state is larger than payload size quota.
- When, after Parameters processing, the input of a state is larger than the payload size quota.
- See the AWS documentation to learn more about AWS Step Functions Quotas.
States.HeartbeatTimeout
- A Task state failed to send a heartbeat for a period longer than the HeartbeatSeconds value.States.Timeout
- A Task state either ran longer than the TimeoutSeconds value, or failed to send a heartbeat for a period longer than the HeartbeatSeconds value.States.TaskFailed
- A Task state failed during the execution. When used in a retry or catch,States.TaskFailed
acts as a wildcard that matches any known error name except forStates.Timeout
.
Logging
Enable logging to CloudWatch by passing a logging configuration with a destination LogGroup:
import software.amazon.awscdk.services.logs.*; LogGroup logGroup = new LogGroup(this, "MyLogGroup"); Chain definition = Chain.start(new Pass(this, "Pass")); StateMachine.Builder.create(this, "MyStateMachine") .definitionBody(DefinitionBody.fromChainable(definition)) .logs(LogOptions.builder() .destination(logGroup) .level(LogLevel.ALL) .build()) .build();
Encryption
You can encrypt your data using a customer managed key for AWS Step Functions state machines and activities. You can configure a symmetric AWS KMS key and data key reuse period when creating or updating a State Machine or when creating an Activity. The execution history and state machine definition will be encrypted with the key applied to the State Machine. Activity inputs will be encrypted with the key applied to the Activity.
Encrypting state machines
You can provide a symmetric KMS key to encrypt the state machine definition and execution history:
import software.amazon.awscdk.services.kms.*; import software.amazon.awscdk.*; Key kmsKey = new Key(this, "Key"); StateMachine stateMachine = StateMachine.Builder.create(this, "StateMachineWithCMKEncryptionConfiguration") .stateMachineName("StateMachineWithCMKEncryptionConfiguration") .definitionBody(DefinitionBody.fromChainable(Chain.start(new Pass(this, "Pass")))) .stateMachineType(StateMachineType.STANDARD) .encryptionConfiguration(new CustomerManagedEncryptionConfiguration(kmsKey, Duration.seconds(60))) .build();
Encrypting state machine logs in Cloud Watch Logs
If a state machine is encrypted with a customer managed key and has logging enabled, its decrypted execution history will be stored in CloudWatch Logs. If you want to encrypt the logs from the state machine using your own KMS key, you can do so by configuring the LogGroup
associated with the state machine to use a KMS key.
import software.amazon.awscdk.services.kms.*; import software.amazon.awscdk.services.iam.*; import software.amazon.awscdk.services.logs.*; Key stateMachineKmsKey = new Key(this, "StateMachine Key"); Key logGroupKey = new Key(this, "LogGroup Key"); /* Required KMS key policy which allows the CloudWatchLogs service principal to encrypt the entire log group using the customer managed kms key. See: https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html#cmk-permissions */ logGroupKey.addToResourcePolicy(PolicyStatement.Builder.create() .resources(List.of("*")) .actions(List.of("kms:Encrypt*", "kms:Decrypt*", "kms:ReEncrypt*", "kms:GenerateDataKey*", "kms:Describe*")) .principals(List.of(new ServicePrincipal(String.format("logs.%s.amazonaws.com", cdk.Stack.of(this).getRegion())))) .conditions(Map.of( "ArnEquals", Map.of( "kms:EncryptionContext:aws:logs:arn", cdk.Stack.of(this).formatArn(ArnComponents.builder() .service("logs") .resource("log-group") .sep(":") .resourceName("/aws/vendedlogs/states/MyLogGroup") .build())))) .build()); // Create logGroup and provding encryptionKey which will be used to encrypt the log group LogGroup logGroup = LogGroup.Builder.create(this, "MyLogGroup") .logGroupName("/aws/vendedlogs/states/MyLogGroup") .encryptionKey(logGroupKey) .build(); // Create state machine with CustomerManagedEncryptionConfiguration StateMachine stateMachine = StateMachine.Builder.create(this, "StateMachineWithCMKWithCWLEncryption") .stateMachineName("StateMachineWithCMKWithCWLEncryption") .definitionBody(DefinitionBody.fromChainable(Chain.start(Pass.Builder.create(this, "PassState") .result(Result.fromString("Hello World")) .build()))) .stateMachineType(StateMachineType.STANDARD) .encryptionConfiguration(new CustomerManagedEncryptionConfiguration(stateMachineKmsKey)) .logs(LogOptions.builder() .destination(logGroup) .level(LogLevel.ALL) .includeExecutionData(true) .build()) .build();
Encrypting activity inputs
When you provide a symmetric KMS key, all inputs from the Step Functions Activity will be encrypted using the provided KMS key:
import software.amazon.awscdk.services.kms.*; import software.amazon.awscdk.*; Key kmsKey = new Key(this, "Key"); Activity activity = Activity.Builder.create(this, "ActivityWithCMKEncryptionConfiguration") .activityName("ActivityWithCMKEncryptionConfiguration") .encryptionConfiguration(new CustomerManagedEncryptionConfiguration(kmsKey, Duration.seconds(75))) .build();
Changing Encryption
If you want to switch encryption from a customer provided key to a Step Functions owned key or vice-versa you must explicitly provide encryptionConfiguration?
Example: Switching from a customer managed key to a Step Functions owned key for StateMachine
Before
import software.amazon.awscdk.services.kms.*; import software.amazon.awscdk.*; Key kmsKey = new Key(this, "Key"); StateMachine stateMachine = StateMachine.Builder.create(this, "StateMachine") .stateMachineName("StateMachine") .definitionBody(DefinitionBody.fromChainable(Chain.start(new Pass(this, "Pass")))) .stateMachineType(StateMachineType.STANDARD) .encryptionConfiguration(new CustomerManagedEncryptionConfiguration(kmsKey, Duration.seconds(60))) .build();
After
StateMachine stateMachine = StateMachine.Builder.create(this, "StateMachine") .stateMachineName("StateMachine") .definitionBody(DefinitionBody.fromChainable(Chain.start(new Pass(this, "Pass")))) .stateMachineType(StateMachineType.STANDARD) .encryptionConfiguration(new AwsOwnedEncryptionConfiguration()) .build();
X-Ray tracing
Enable X-Ray tracing for StateMachine:
Chain definition = Chain.start(new Pass(this, "Pass")); StateMachine.Builder.create(this, "MyStateMachine") .definitionBody(DefinitionBody.fromChainable(definition)) .tracingEnabled(true) .build();
See the AWS documentation to learn more about AWS Step Functions's X-Ray support.
State Machine Permission Grants
IAM roles, users, or groups which need to be able to work with a State Machine should be granted IAM permissions.
Any object that implements the IGrantable
interface (has an associated principal) can be granted permissions by calling:
stateMachine.grantStartExecution(principal)
- grants the principal the ability to execute the state machinestateMachine.grantRead(principal)
- grants the principal read accessstateMachine.grantTaskResponse(principal)
- grants the principal the ability to send task tokens to the state machinestateMachine.grantExecution(principal, actions)
- grants the principal execution-level permissions for the IAM actions specifiedstateMachine.grant(principal, actions)
- grants the principal state-machine-level permissions for the IAM actions specified
Start Execution Permission
Grant permission to start an execution of a state machine by calling the grantStartExecution()
API.
IChainable definition; Role role = Role.Builder.create(this, "Role") .assumedBy(new ServicePrincipal("lambda.amazonaws.com")) .build(); StateMachine stateMachine = StateMachine.Builder.create(this, "StateMachine") .definitionBody(DefinitionBody.fromChainable(definition)) .build(); // Give role permission to start execution of state machine stateMachine.grantStartExecution(role);
The following permission is provided to a service principal by the grantStartExecution()
API:
states:StartExecution
- to state machine
Read Permissions
Grant read
access to a state machine by calling the grantRead()
API.
IChainable definition; Role role = Role.Builder.create(this, "Role") .assumedBy(new ServicePrincipal("lambda.amazonaws.com")) .build(); StateMachine stateMachine = StateMachine.Builder.create(this, "StateMachine") .definitionBody(DefinitionBody.fromChainable(definition)) .build(); // Give role read access to state machine stateMachine.grantRead(role);
The following read permissions are provided to a service principal by the grantRead()
API:
states:ListExecutions
- to state machinestates:ListStateMachines
- to state machinestates:DescribeExecution
- to executionsstates:DescribeStateMachineForExecution
- to executionsstates:GetExecutionHistory
- to executionsstates:ListActivities
- to*
states:DescribeStateMachine
- to*
states:DescribeActivity
- to*
Task Response Permissions
Grant permission to allow task responses to a state machine by calling the grantTaskResponse()
API:
IChainable definition; Role role = Role.Builder.create(this, "Role") .assumedBy(new ServicePrincipal("lambda.amazonaws.com")) .build(); StateMachine stateMachine = StateMachine.Builder.create(this, "StateMachine") .definitionBody(DefinitionBody.fromChainable(definition)) .build(); // Give role task response permissions to the state machine stateMachine.grantTaskResponse(role);
The following read permissions are provided to a service principal by the grantRead()
API:
states:SendTaskSuccess
- to state machinestates:SendTaskFailure
- to state machinestates:SendTaskHeartbeat
- to state machine
Execution-level Permissions
Grant execution-level permissions to a state machine by calling the grantExecution()
API:
IChainable definition; Role role = Role.Builder.create(this, "Role") .assumedBy(new ServicePrincipal("lambda.amazonaws.com")) .build(); StateMachine stateMachine = StateMachine.Builder.create(this, "StateMachine") .definitionBody(DefinitionBody.fromChainable(definition)) .build(); // Give role permission to get execution history of ALL executions for the state machine stateMachine.grantExecution(role, "states:GetExecutionHistory");
Custom Permissions
You can add any set of permissions to a state machine by calling the grant()
API.
IChainable definition; User user = new User(this, "MyUser"); StateMachine stateMachine = StateMachine.Builder.create(this, "StateMachine") .definitionBody(DefinitionBody.fromChainable(definition)) .build(); //give user permission to send task success to the state machine stateMachine.grant(user, "states:SendTaskSuccess");
Import
Any Step Functions state machine that has been created outside the stack can be imported into your CDK stack.
State machines can be imported by their ARN via the StateMachine.fromStateMachineArn()
API.
In addition, the StateMachine can be imported via the StateMachine.fromStateMachineName()
method, as long as they are in the same account/region as the current construct.
App app = new App(); Stack stack = new Stack(app, "MyStack"); StateMachine.fromStateMachineArn(this, "ViaArnImportedStateMachine", "arn:aws:states:us-east-1:123456789012:stateMachine:StateMachine2E01A3A5-N5TJppzoevKQ"); StateMachine.fromStateMachineName(this, "ViaResourceNameImportedStateMachine", "StateMachine2E01A3A5-N5TJppzoevKQ");
-
ClassDescriptionDefine a new Step Functions Activity.A fluent builder for
Activity
.Properties for defining a new Step Functions Activity.A builder forActivityProps
An implementation forActivityProps
Options for selecting the choice paths.A builder forAfterwardsOptions
An implementation forAfterwardsOptions
Define a new AwsOwnedEncryptionConfiguration.Error handler details.A builder forCatchProps
An implementation forCatchProps
An activity is a task that you write in any programming language and host on any machine that has access to AWS Step Functions .A fluent builder forCfnActivity
.Settings to configure server-side encryption for an activity.A builder forCfnActivity.EncryptionConfigurationProperty
An implementation forCfnActivity.EncryptionConfigurationProperty
TheTagsEntry
property specifies tags to identify an activity.A builder forCfnActivity.TagsEntryProperty
An implementation forCfnActivity.TagsEntryProperty
Properties for defining aCfnActivity
.A builder forCfnActivityProps
An implementation forCfnActivityProps
Provisions a state machine.A fluent builder forCfnStateMachine
.Defines a CloudWatch log group.A builder forCfnStateMachine.CloudWatchLogsLogGroupProperty
An implementation forCfnStateMachine.CloudWatchLogsLogGroupProperty
Settings to configure server-side encryption for a state machine.A builder forCfnStateMachine.EncryptionConfigurationProperty
An implementation forCfnStateMachine.EncryptionConfigurationProperty
Defines a destination forLoggingConfiguration
.A builder forCfnStateMachine.LogDestinationProperty
An implementation forCfnStateMachine.LogDestinationProperty
Defines what execution history events are logged and where they are logged.A builder forCfnStateMachine.LoggingConfigurationProperty
An implementation forCfnStateMachine.LoggingConfigurationProperty
Defines the S3 bucket location where a state machine definition is stored.A builder forCfnStateMachine.S3LocationProperty
An implementation forCfnStateMachine.S3LocationProperty
TheTagsEntry
property specifies tags to identify a state machine.A builder forCfnStateMachine.TagsEntryProperty
An implementation forCfnStateMachine.TagsEntryProperty
Selects whether or not the state machine's AWS X-Ray tracing is enabled.A builder forCfnStateMachine.TracingConfigurationProperty
An implementation forCfnStateMachine.TracingConfigurationProperty
Represents a state machine alias .A fluent builder forCfnStateMachineAlias
.Enables gradual state machine deployments.A builder forCfnStateMachineAlias.DeploymentPreferenceProperty
An implementation forCfnStateMachineAlias.DeploymentPreferenceProperty
The state machine version to which you want to route the execution traffic.A builder forCfnStateMachineAlias.RoutingConfigurationVersionProperty
An implementation forCfnStateMachineAlias.RoutingConfigurationVersionProperty
Properties for defining aCfnStateMachineAlias
.A builder forCfnStateMachineAliasProps
An implementation forCfnStateMachineAliasProps
Properties for defining aCfnStateMachine
.A builder forCfnStateMachineProps
An implementation forCfnStateMachineProps
Represents a state machine version .A fluent builder forCfnStateMachineVersion
.Properties for defining aCfnStateMachineVersion
.A builder forCfnStateMachineVersionProps
An implementation forCfnStateMachineVersionProps
A collection of states to chain onto.Example:Define a Choice in the state machine.A fluent builder forChoice
.Properties for defining a Choice state.A builder forChoiceProps
An implementation forChoiceProps
Options for Choice Transition.A builder forChoiceTransitionOptions
An implementation forChoiceTransitionOptions
A Condition for use in a Choice state branch.Specifies a target role assumed by the State Machine's execution role for invoking the task's resource.A builder forCredentials
An implementation forCredentials
CSV header location options.Configuration for CSV header options for a CSV Item Reader.Define a new CustomerManagedEncryptionConfiguration.State defined by supplying Amazon States Language (ASL) in the state machine.A fluent builder forCustomState
.Properties for defining a custom state definition.A builder forCustomStateProps
An implementation forCustomStateProps
Example:Partial object from the StateMachine L1 construct properties containing definition information.A builder forDefinitionConfig
An implementation forDefinitionConfig
Define a Distributed Mode Map state in the state machine.A fluent builder forDistributedMap
.Properties for configuring a Distribute Map state.A builder forDistributedMapProps
An implementation forDistributedMapProps
Base class for creating an EncryptionConfiguration for either state machines or activities.Predefined error strings Error names in Amazon States Language - https://states-language.net/spec.html#appendix-a Error handling in Step Functions - https://docs.aws.amazon.com/step-functions/latest/dg/concepts-error-handling.html.Define a Fail state in the state machine.A fluent builder forFail
.Properties for defining a Fail state.A builder forFailProps
An implementation forFailProps
Helper functions to work with structures containing fields.Example:A fluent builder forFileDefinitionBody
.Options for finding reachable states.A builder forFindStateOptions
An implementation forFindStateOptions
Represents a Step Functions Activity https://docs.aws.amazon.com/step-functions/latest/dg/concepts-activities.html.Internal default implementation forIActivity
.A proxy class which represents a concrete javascript instance of this type.Interface for objects that can be used in a Chain.Internal default implementation forIChainable
.A proxy class which represents a concrete javascript instance of this type.Base interface for Item Reader configurations.Internal default implementation forIItemReader
.A proxy class which represents a concrete javascript instance of this type.Interface for states that can have 'next' states.Internal default implementation forINextable
.A proxy class which represents a concrete javascript instance of this type.The type of task input.AWS Step Functions integrates with services directly in the Amazon States Language.A State Machine.Internal default implementation forIStateMachine
.A proxy class which represents a concrete javascript instance of this type.Configuration for processing a group of items in a single child workflow execution.A fluent builder forItemBatcher
.Interface for ItemBatcher configuration properties.A builder forItemBatcherProps
An implementation forItemBatcherProps
Base interface for Item Reader configuration properties.A builder forItemReaderProps
An implementation forItemReaderProps
Values allowed in the retrier JitterStrategy field.Extract a field from the State Machine data or context that gets passed around between states.Defines which category of execution history events are logged.Defines what execution history events are logged and where they are logged.A builder forLogOptions
An implementation forLogOptions
Define a Map state in the state machine.A fluent builder forMap
.Define a Map state in the state machine.Properties for defining a Map state.A builder forMapBaseProps
An implementation forMapBaseProps
Properties for defining a Map state.A builder forMapProps
An implementation forMapProps
Define a Parallel state in the state machine.A fluent builder forParallel
.Properties for defining a Parallel state.A builder forParallelProps
An implementation forParallelProps
Define a Pass in the state machine.A fluent builder forPass
.Properties for defining a Pass state.A builder forPassProps
An implementation forPassProps
Specifies the configuration for the processor Map state.A builder forProcessorConfig
An implementation forProcessorConfig
Mode of the Map workflow.Execution type for the Map workflow.The result of a Pass operation.Configuration for writing Distributed Map state results to S3.A fluent builder forResultWriter
.Interface for Result Writer configuration properties.A builder forResultWriterProps
An implementation forResultWriterProps
Retry details.A builder forRetryProps
An implementation forRetryProps
Item Reader configuration for iterating over items in a CSV file stored in S3.A fluent builder forS3CsvItemReader
.Properties for configuring an Item Reader that iterates over items in a CSV file in S3.A builder forS3CsvItemReaderProps
An implementation forS3CsvItemReaderProps
Base interface for Item Reader configuration properties the iterate over entries in a S3 file.A builder forS3FileItemReaderProps
An implementation forS3FileItemReaderProps
Item Reader configuration for iterating over items in a JSON array stored in a S3 file.A fluent builder forS3JsonItemReader
.Item Reader configuration for iterating over items in a S3 inventory manifest file stored in S3.A fluent builder forS3ManifestItemReader
.Item Reader configuration for iterating over objects in an S3 bucket.A fluent builder forS3ObjectsItemReader
.Properties for configuring an Item Reader that iterates over objects in an S3 bucket.A builder forS3ObjectsItemReaderProps
An implementation forS3ObjectsItemReaderProps
Three ways to call an integrated service: Request Response, Run a Job and Wait for a Callback with Task Token.Options for creating a single state.A builder forSingleStateOptions
An implementation forSingleStateOptions
Base class for all other state classes.A collection of connected states.Define a StepFunctions State Machine.A fluent builder forStateMachine
.Base class for reusable state machine fragments.Properties for defining a State Machine.A builder forStateMachineProps
An implementation forStateMachineProps
Two types of state machines are available in AWS Step Functions: EXPRESS AND STANDARD.Properties shared by all states.A builder forStateProps
An implementation forStateProps
Metrics on the rate limiting performed on state machine execution.Example:Define a Succeed state in the state machine.A fluent builder forSucceed
.Properties for defining a Succeed state.A builder forSucceedProps
An implementation forSucceedProps
Type union for task classes that accept multiple types of payload.Task Metrics.A builder forTaskMetricsConfig
An implementation forTaskMetricsConfig
Role to be assumed by the State Machine's execution role for invoking a task's resource.Define a Task state in the state machine.Props that are common to all tasks.A builder forTaskStateBaseProps
An implementation forTaskStateBaseProps
Timeout for a task or heartbeat.Define a Wait state in the state machine.A fluent builder forWait
.Properties for defining a Wait state.A builder forWaitProps
An implementation forWaitProps
Represents the Wait state which delays a state machine from continuing for a specified time.