Sélectionner vos préférences de cookies

Nous utilisons des cookies essentiels et des outils similaires qui sont nécessaires au fonctionnement de notre site et à la fourniture de nos services. Nous utilisons des cookies de performance pour collecter des statistiques anonymes afin de comprendre comment les clients utilisent notre site et d’apporter des améliorations. Les cookies essentiels ne peuvent pas être désactivés, mais vous pouvez cliquer sur « Personnaliser » ou « Refuser » pour refuser les cookies de performance.

Si vous êtes d’accord, AWS et les tiers approuvés utiliseront également des cookies pour fournir des fonctionnalités utiles au site, mémoriser vos préférences et afficher du contenu pertinent, y compris des publicités pertinentes. Pour accepter ou refuser tous les cookies non essentiels, cliquez sur « Accepter » ou « Refuser ». Pour effectuer des choix plus détaillés, cliquez sur « Personnaliser ».

Mistral AI 2 paramètres et inférence importants (24,07)

Mode de mise au point
Mistral AI 2 paramètres et inférence importants (24,07) - Amazon Bedrock

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Le Mistral AI la fin du chat vous API permet de créer des applications conversationnelles. Vous pouvez également utiliser Amazon Bedrock Converse APIavec ce modèle. Vous pouvez utiliser des outils pour effectuer des appels de fonction.

Astuce

Vous pouvez utiliser le plugin Mistral AI fin du chat API avec les opérations d'inférence de base (InvokeModelou InvokeModelWithResponseStream). Toutefois, nous vous recommandons d'utiliser le Converse APIpour implémenter des messages dans votre application. Le Converse APIfournit un ensemble unifié de paramètres qui fonctionnent sur tous les modèles prenant en charge les messages. Pour de plus amples informations, veuillez consulter Menez une conversation avec le Converse Opérations API.

Mistral AI les modèles sont disponibles sous licence Apache 2.0. Pour plus d'informations sur l'utilisation Mistral AI modèles, voir le Mistral AI documentation.

Modèles pris en charge

Vous pouvez utiliser les éléments suivants Mistral AI modèles avec les exemples de code sur cette page.

  • Mistral Large 2 (24.07)

Vous avez besoin de l’ID du modèle que vous voulez utiliser. Pour obtenir l'ID du modèle, voirModèles de fondation pris en charge dans Amazon Bedrock.

Exemples de demandes et de réponses

Request

Mistral AI Exemple de modèle d'appel Large 2 (24.07).

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') response = bedrock.invoke_model( modelId='mistral.mistral-large-2407-v1:0', body=json.dumps({ 'messages': [ { 'role': 'user', 'content': 'which llm are you?' } ], }) ) print(json.dumps(json.loads(response['body']), indent=4))
Converse

Mistral AI Grand exemple inverse (24,07).

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') response = bedrock.converse( modelId='mistral.mistral-large-2407-v1:0', messages=[ { 'role': 'user', 'content': [ { 'text': 'which llm are you?' } ] } ] ) print(json.dumps(json.loads(response['body']), indent=4))
invoke_model_with_response_stream

Mistral AI Grand exemple de 2 (24.07) invoke_model_with_response_stream.

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') response = bedrock.invoke_model_with_response_stream( "body": json.dumps({ "messages": [{"role": "user", "content": "What is the best French cheese?"}], }), "modelId":"mistral.mistral-large-2407-v1:0" ) stream = response.get('body') if stream: for event in stream: chunk=event.get('chunk') if chunk: chunk_obj=json.loads(chunk.get('bytes').decode()) print(chunk_obj)
converse_stream

Mistral AI Grand exemple de 2 (24.07) converse_stream.

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') mistral_params = { "messages": [{ "role": "user","content": [{"text": "What is the best French cheese? "}] }], "modelId":"mistral.mistral-large-2407-v1:0", } response = bedrock.converse_stream(**mistral_params) stream = response.get('stream') if stream: for event in stream: if 'messageStart' in event: print(f"\nRole: {event['messageStart']['role']}") if 'contentBlockDelta' in event: print(event['contentBlockDelta']['delta']['text'], end="") if 'messageStop' in event: print(f"\nStop reason: {event['messageStop']['stopReason']}") if 'metadata' in event: metadata = event['metadata'] if 'usage' in metadata: print("\nToken usage ... ") print(f"Input tokens: {metadata['usage']['inputTokens']}") print( f":Output tokens: {metadata['usage']['outputTokens']}") print(f":Total tokens: {metadata['usage']['totalTokens']}") if 'metrics' in event['metadata']: print( f"Latency: {metadata['metrics']['latencyMs']} milliseconds")
JSON Output

Mistral AI Exemple de JSON sortie de grande taille 2 (24,07).

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') mistral_params = { "body": json.dumps({ "messages": [{"role": "user", "content": "What is the best French meal? Return the name and the ingredients in short JSON object."}] }), "modelId":"mistral.mistral-large-2407-v1:0", } response = bedrock.invoke_model(**mistral_params) body = response.get('body').read().decode('utf-8') print(json.loads(body))
Tooling

Mistral AI Exemple de 2 outils de grande taille (24,07).

data = { 'transaction_id': ['T1001', 'T1002', 'T1003', 'T1004', 'T1005'], 'customer_id': ['C001', 'C002', 'C003', 'C002', 'C001'], 'payment_amount': [125.50, 89.99, 120.00, 54.30, 210.20], 'payment_date': ['2021-10-05', '2021-10-06', '2021-10-07', '2021-10-05', '2021-10-08'], 'payment_status': ['Paid', 'Unpaid', 'Paid', 'Paid', 'Pending'] } # Create DataFrame df = pd.DataFrame(data) def retrieve_payment_status(df: data, transaction_id: str) -> str: if transaction_id in df.transaction_id.values: return json.dumps({'status': df[df.transaction_id == transaction_id].payment_status.item()}) return json.dumps({'error': 'transaction id not found.'}) def retrieve_payment_date(df: data, transaction_id: str) -> str: if transaction_id in df.transaction_id.values: return json.dumps({'date': df[df.transaction_id == transaction_id].payment_date.item()}) return json.dumps({'error': 'transaction id not found.'}) tools = [ { "type": "function", "function": { "name": "retrieve_payment_status", "description": "Get payment status of a transaction", "parameters": { "type": "object", "properties": { "transaction_id": { "type": "string", "description": "The transaction id.", } }, "required": ["transaction_id"], }, }, }, { "type": "function", "function": { "name": "retrieve_payment_date", "description": "Get payment date of a transaction", "parameters": { "type": "object", "properties": { "transaction_id": { "type": "string", "description": "The transaction id.", } }, "required": ["transaction_id"], }, }, } ] names_to_functions = { 'retrieve_payment_status': functools.partial(retrieve_payment_status, df=df), 'retrieve_payment_date': functools.partial(retrieve_payment_date, df=df) } test_tool_input = "What's the status of my transaction T1001?" message = [{"role": "user", "content": test_tool_input}] def invoke_bedrock_mistral_tool(): mistral_params = { "body": json.dumps({ "messages": message, "tools": tools }), "modelId":"mistral.mistral-large-2407-v1:0", } response = bedrock.invoke_model(**mistral_params) body = response.get('body').read().decode('utf-8') body = json.loads(body) choices = body.get("choices") message.append(choices[0].get("message")) tool_call = choices[0].get("message").get("tool_calls")[0] function_name = tool_call.get("function").get("name") function_params = json.loads(tool_call.get("function").get("arguments")) print("\nfunction_name: ", function_name, "\nfunction_params: ", function_params) function_result = names_to_functions[function_name](**function_params) message.append({"role": "tool", "content": function_result, "tool_call_id":tool_call.get("id")}) new_mistral_params = { "body": json.dumps({ "messages": message, "tools": tools }), "modelId":"mistral.mistral-large-2407-v1:0", } response = bedrock.invoke_model(**new_mistral_params) body = response.get('body').read().decode('utf-8') body = json.loads(body) print(body) invoke_bedrock_mistral_tool()

Mistral AI Exemple de modèle d'appel Large 2 (24.07).

import boto3 import json bedrock = session.client('bedrock-runtime', 'us-west-2') response = bedrock.invoke_model( modelId='mistral.mistral-large-2407-v1:0', body=json.dumps({ 'messages': [ { 'role': 'user', 'content': 'which llm are you?' } ], }) ) print(json.dumps(json.loads(response['body']), indent=4))

Rubrique suivante :

Stability AI des modèles

Rubrique précédente :

Mistral AI fin du chat
ConfidentialitéConditions d'utilisation du sitePréférences de cookies
© 2025, Amazon Web Services, Inc. ou ses affiliés. Tous droits réservés.