CfnDataQualityJobDefinition¶
-
class
aws_cdk.aws_sagemaker.
CfnDataQualityJobDefinition
(scope, id, *, data_quality_app_specification, data_quality_job_input, data_quality_job_output_config, job_resources, role_arn, data_quality_baseline_config=None, job_definition_name=None, network_config=None, stopping_condition=None, tags=None)¶ Bases:
aws_cdk.core.CfnResource
A CloudFormation
AWS::SageMaker::DataQualityJobDefinition
.Creates a definition for a job that monitors data quality and drift. For information about model monitor, see Amazon SageMaker Model Monitor .
- CloudformationResource
AWS::SageMaker::DataQualityJobDefinition
- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker cfn_data_quality_job_definition = sagemaker.CfnDataQualityJobDefinition(self, "MyCfnDataQualityJobDefinition", data_quality_app_specification=sagemaker.CfnDataQualityJobDefinition.DataQualityAppSpecificationProperty( image_uri="imageUri", # the properties below are optional container_arguments=["containerArguments"], container_entrypoint=["containerEntrypoint"], environment={ "environment_key": "environment" }, post_analytics_processor_source_uri="postAnalyticsProcessorSourceUri", record_preprocessor_source_uri="recordPreprocessorSourceUri" ), data_quality_job_input=sagemaker.CfnDataQualityJobDefinition.DataQualityJobInputProperty( endpoint_input=sagemaker.CfnDataQualityJobDefinition.EndpointInputProperty( endpoint_name="endpointName", local_path="localPath", # the properties below are optional s3_data_distribution_type="s3DataDistributionType", s3_input_mode="s3InputMode" ) ), data_quality_job_output_config=sagemaker.CfnDataQualityJobDefinition.MonitoringOutputConfigProperty( monitoring_outputs=[sagemaker.CfnDataQualityJobDefinition.MonitoringOutputProperty( s3_output=sagemaker.CfnDataQualityJobDefinition.S3OutputProperty( local_path="localPath", s3_uri="s3Uri", # the properties below are optional s3_upload_mode="s3UploadMode" ) )], # the properties below are optional kms_key_id="kmsKeyId" ), job_resources=sagemaker.CfnDataQualityJobDefinition.MonitoringResourcesProperty( cluster_config=sagemaker.CfnDataQualityJobDefinition.ClusterConfigProperty( instance_count=123, instance_type="instanceType", volume_size_in_gb=123, # the properties below are optional volume_kms_key_id="volumeKmsKeyId" ) ), role_arn="roleArn", # the properties below are optional data_quality_baseline_config=sagemaker.CfnDataQualityJobDefinition.DataQualityBaselineConfigProperty( baselining_job_name="baseliningJobName", constraints_resource=sagemaker.CfnDataQualityJobDefinition.ConstraintsResourceProperty( s3_uri="s3Uri" ), statistics_resource=sagemaker.CfnDataQualityJobDefinition.StatisticsResourceProperty( s3_uri="s3Uri" ) ), job_definition_name="jobDefinitionName", network_config=sagemaker.CfnDataQualityJobDefinition.NetworkConfigProperty( enable_inter_container_traffic_encryption=False, enable_network_isolation=False, vpc_config=sagemaker.CfnDataQualityJobDefinition.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] ) ), stopping_condition=sagemaker.CfnDataQualityJobDefinition.StoppingConditionProperty( max_runtime_in_seconds=123 ), tags=[CfnTag( key="key", value="value" )] )
Create a new
AWS::SageMaker::DataQualityJobDefinition
.- Parameters
scope (
Construct
) –scope in which this resource is defined.
id (
str
) –scoped id of the resource.
data_quality_app_specification (
Union
[IResolvable
,DataQualityAppSpecificationProperty
]) – Specifies the container that runs the monitoring job.data_quality_job_input (
Union
[IResolvable
,DataQualityJobInputProperty
]) – A list of inputs for the monitoring job. Currently endpoints are supported as monitoring inputs.data_quality_job_output_config (
Union
[IResolvable
,MonitoringOutputConfigProperty
]) – The output configuration for monitoring jobs.job_resources (
Union
[IResolvable
,MonitoringResourcesProperty
]) – Identifies the resources to deploy for a monitoring job.role_arn (
str
) – The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.data_quality_baseline_config (
Union
[IResolvable
,DataQualityBaselineConfigProperty
,None
]) – Configures the constraints and baselines for the monitoring job.job_definition_name (
Optional
[str
]) – The name for the monitoring job definition.network_config (
Union
[IResolvable
,NetworkConfigProperty
,None
]) – Specifies networking configuration for the monitoring job.stopping_condition (
Union
[IResolvable
,StoppingConditionProperty
,None
]) – A time limit for how long the monitoring job is allowed to run before stopping.tags (
Optional
[Sequence
[CfnTag
]]) – An array of key-value pairs to apply to this resource. For more information, see Tag .
Methods
-
add_deletion_override
(path)¶ Syntactic sugar for
addOverride(path, undefined)
.- Parameters
path (
str
) – The path of the value to delete.- Return type
None
-
add_depends_on
(target)¶ Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.
This can be used for resources across stacks (or nested stack) boundaries and the dependency will automatically be transferred to the relevant scope.
- Parameters
target (
CfnResource
) –- Return type
None
-
add_metadata
(key, value)¶ Add a value to the CloudFormation Resource Metadata.
- Parameters
key (
str
) –value (
Any
) –
- See
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- Return type
None
-
add_override
(path, value)¶ Adds an override to the synthesized CloudFormation resource.
To add a property override, either use
addPropertyOverride
or prefixpath
with “Properties.” (i.e.Properties.TopicName
).If the override is nested, separate each nested level using a dot (.) in the path parameter. If there is an array as part of the nesting, specify the index in the path.
To include a literal
.
in the property name, prefix with a\
. In most programming languages you will need to write this as"\\."
because the\
itself will need to be escaped.For example:
cfn_resource.add_override("Properties.GlobalSecondaryIndexes.0.Projection.NonKeyAttributes", ["myattribute"]) cfn_resource.add_override("Properties.GlobalSecondaryIndexes.1.ProjectionType", "INCLUDE")
would add the overrides Example:
"Properties": { "GlobalSecondaryIndexes": [ { "Projection": { "NonKeyAttributes": [ "myattribute" ] ... } ... }, { "ProjectionType": "INCLUDE" ... }, ] ... }
The
value
argument toaddOverride
will not be processed or translated in any way. Pass raw JSON values in here with the correct capitalization for CloudFormation. If you pass CDK classes or structs, they will be rendered with lowercased key names, and CloudFormation will reject the template.- Parameters
path (
str
) –The path of the property, you can use dot notation to override values in complex types. Any intermdediate keys will be created as needed.
value (
Any
) –The value. Could be primitive or complex.
- Return type
None
-
add_property_deletion_override
(property_path)¶ Adds an override that deletes the value of a property from the resource definition.
- Parameters
property_path (
str
) – The path to the property.- Return type
None
-
add_property_override
(property_path, value)¶ Adds an override to a resource property.
Syntactic sugar for
addOverride("Properties.<...>", value)
.- Parameters
property_path (
str
) – The path of the property.value (
Any
) – The value.
- Return type
None
-
apply_removal_policy
(policy=None, *, apply_to_update_replace_policy=None, default=None)¶ Sets the deletion policy of the resource based on the removal policy specified.
The Removal Policy controls what happens to this resource when it stops being managed by CloudFormation, either because you’ve removed it from the CDK application or because you’ve made a change that requires the resource to be replaced.
The resource can be deleted (
RemovalPolicy.DESTROY
), or left in your AWS account for data recovery and cleanup later (RemovalPolicy.RETAIN
).- Parameters
policy (
Optional
[RemovalPolicy
]) –apply_to_update_replace_policy (
Optional
[bool
]) – Apply the same deletion policy to the resource’s “UpdateReplacePolicy”. Default: truedefault (
Optional
[RemovalPolicy
]) – The default policy to apply in case the removal policy is not defined. Default: - Default value is resource specific. To determine the default value for a resoure, please consult that specific resource’s documentation.
- Return type
None
-
get_att
(attribute_name)¶ Returns a token for an runtime attribute of this resource.
Ideally, use generated attribute accessors (e.g.
resource.arn
), but this can be used for future compatibility in case there is no generated attribute.- Parameters
attribute_name (
str
) – The name of the attribute.- Return type
-
get_metadata
(key)¶ Retrieve a value value from the CloudFormation Resource Metadata.
- Parameters
key (
str
) –- See
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- Return type
Any
-
inspect
(inspector)¶ Examines the CloudFormation resource and discloses attributes.
- Parameters
inspector (
TreeInspector
) –tree inspector to collect and process attributes.
- Return type
None
-
override_logical_id
(new_logical_id)¶ Overrides the auto-generated logical ID with a specific ID.
- Parameters
new_logical_id (
str
) – The new logical ID to use for this stack element.- Return type
None
-
to_string
()¶ Returns a string representation of this construct.
- Return type
str
- Returns
a string representation of this resource
Attributes
-
CFN_RESOURCE_TYPE_NAME
= 'AWS::SageMaker::DataQualityJobDefinition'¶
-
attr_creation_time
¶ The time when the job definition was created.
- CloudformationAttribute
CreationTime
- Return type
str
-
attr_job_definition_arn
¶ The Amazon Resource Name (ARN) of the job definition.
- CloudformationAttribute
JobDefinitionArn
- Return type
str
-
cfn_options
¶ Options for this resource, such as condition, update policy etc.
- Return type
-
cfn_resource_type
¶ AWS resource type.
- Return type
str
-
creation_stack
¶ return:
the stack trace of the point where this Resource was created from, sourced from the +metadata+ entry typed +aws:cdk:logicalId+, and with the bottom-most node +internal+ entries filtered.
- Return type
List
[str
]
-
data_quality_app_specification
¶ Specifies the container that runs the monitoring job.
-
data_quality_baseline_config
¶ Configures the constraints and baselines for the monitoring job.
-
data_quality_job_input
¶ A list of inputs for the monitoring job.
Currently endpoints are supported as monitoring inputs.
-
data_quality_job_output_config
¶ The output configuration for monitoring jobs.
-
job_definition_name
¶ The name for the monitoring job definition.
-
job_resources
¶ Identifies the resources to deploy for a monitoring job.
-
logical_id
¶ The logical ID for this CloudFormation stack element.
The logical ID of the element is calculated from the path of the resource node in the construct tree.
To override this value, use
overrideLogicalId(newLogicalId)
.- Return type
str
- Returns
the logical ID as a stringified token. This value will only get resolved during synthesis.
-
network_config
¶ Specifies networking configuration for the monitoring job.
-
node
¶ The construct tree node associated with this construct.
- Return type
-
ref
¶ Return a string that will be resolved to a CloudFormation
{ Ref }
for this element.If, by any chance, the intrinsic reference of a resource is not a string, you could coerce it to an IResolvable through
Lazy.any({ produce: resource.ref })
.- Return type
str
-
role_arn
¶ The Amazon Resource Name (ARN) of an IAM role that Amazon SageMaker can assume to perform tasks on your behalf.
-
stack
¶ The stack in which this element is defined.
CfnElements must be defined within a stack scope (directly or indirectly).
- Return type
-
stopping_condition
¶ A time limit for how long the monitoring job is allowed to run before stopping.
An array of key-value pairs to apply to this resource.
For more information, see Tag .
Static Methods
-
classmethod
is_cfn_element
(x)¶ Returns
true
if a construct is a stack element (i.e. part of the synthesized cloudformation template).Uses duck-typing instead of
instanceof
to allow stack elements from different versions of this library to be included in the same stack.- Parameters
x (
Any
) –- Return type
bool
- Returns
The construct as a stack element or undefined if it is not a stack element.
-
classmethod
is_cfn_resource
(construct)¶ Check whether the given construct is a CfnResource.
- Parameters
construct (
IConstruct
) –- Return type
bool
-
classmethod
is_construct
(x)¶ Return whether the given object is a Construct.
- Parameters
x (
Any
) –- Return type
bool
ClusterConfigProperty¶
-
class
CfnDataQualityJobDefinition.
ClusterConfigProperty
(*, instance_count, instance_type, volume_size_in_gb, volume_kms_key_id=None)¶ Bases:
object
The configuration for the cluster of resources used to run the processing job.
- Parameters
instance_count (
Union
[int
,float
]) – The number of ML compute instances to use in the model monitoring job. For distributed processing jobs, specify a value greater than 1. The default value is 1.instance_type (
str
) –CfnDataQualityJobDefinition.ClusterConfigProperty.InstanceType
.volume_size_in_gb (
Union
[int
,float
]) – The size of the ML storage volume, in gigabytes, that you want to provision. You must specify sufficient ML storage for your scenario.volume_kms_key_id (
Optional
[str
]) – The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker cluster_config_property = sagemaker.CfnDataQualityJobDefinition.ClusterConfigProperty( instance_count=123, instance_type="instanceType", volume_size_in_gb=123, # the properties below are optional volume_kms_key_id="volumeKmsKeyId" )
Attributes
-
instance_count
¶ The number of ML compute instances to use in the model monitoring job.
For distributed processing jobs, specify a value greater than 1. The default value is 1.
-
instance_type
¶ CfnDataQualityJobDefinition.ClusterConfigProperty.InstanceType
.
-
volume_kms_key_id
¶ The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.
-
volume_size_in_gb
¶ The size of the ML storage volume, in gigabytes, that you want to provision.
You must specify sufficient ML storage for your scenario.
ConstraintsResourceProperty¶
-
class
CfnDataQualityJobDefinition.
ConstraintsResourceProperty
(*, s3_uri=None)¶ Bases:
object
The constraints resource for a monitoring job.
- Parameters
s3_uri (
Optional
[str
]) – The Amazon S3 URI for the constraints resource.- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker constraints_resource_property = sagemaker.CfnDataQualityJobDefinition.ConstraintsResourceProperty( s3_uri="s3Uri" )
Attributes
-
s3_uri
¶ The Amazon S3 URI for the constraints resource.
DataQualityAppSpecificationProperty¶
-
class
CfnDataQualityJobDefinition.
DataQualityAppSpecificationProperty
(*, image_uri, container_arguments=None, container_entrypoint=None, environment=None, post_analytics_processor_source_uri=None, record_preprocessor_source_uri=None)¶ Bases:
object
Information about the container that a data quality monitoring job runs.
- Parameters
image_uri (
str
) – The container image that the data quality monitoring job runs.container_arguments (
Optional
[Sequence
[str
]]) – The arguments to send to the container that the monitoring job runs.container_entrypoint (
Optional
[Sequence
[str
]]) – The entrypoint for a container used to run a monitoring job.environment (
Union
[IResolvable
,Mapping
[str
,str
],None
]) – Sets the environment variables in the container that the monitoring job runs.post_analytics_processor_source_uri (
Optional
[str
]) – An Amazon S3 URI to a script that is called after analysis has been performed. Applicable only for the built-in (first party) containers.record_preprocessor_source_uri (
Optional
[str
]) – An Amazon S3 URI to a script that is called per row prior to running analysis. It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.
- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker data_quality_app_specification_property = sagemaker.CfnDataQualityJobDefinition.DataQualityAppSpecificationProperty( image_uri="imageUri", # the properties below are optional container_arguments=["containerArguments"], container_entrypoint=["containerEntrypoint"], environment={ "environment_key": "environment" }, post_analytics_processor_source_uri="postAnalyticsProcessorSourceUri", record_preprocessor_source_uri="recordPreprocessorSourceUri" )
Attributes
-
container_arguments
¶ The arguments to send to the container that the monitoring job runs.
-
container_entrypoint
¶ The entrypoint for a container used to run a monitoring job.
-
environment
¶ Sets the environment variables in the container that the monitoring job runs.
-
image_uri
¶ The container image that the data quality monitoring job runs.
-
post_analytics_processor_source_uri
¶ An Amazon S3 URI to a script that is called after analysis has been performed.
Applicable only for the built-in (first party) containers.
-
record_preprocessor_source_uri
¶ An Amazon S3 URI to a script that is called per row prior to running analysis.
It can base64 decode the payload and convert it into a flatted json so that the built-in container can use the converted data. Applicable only for the built-in (first party) containers.
DataQualityBaselineConfigProperty¶
-
class
CfnDataQualityJobDefinition.
DataQualityBaselineConfigProperty
(*, baselining_job_name=None, constraints_resource=None, statistics_resource=None)¶ Bases:
object
Configuration for monitoring constraints and monitoring statistics.
These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.
- Parameters
baselining_job_name (
Optional
[str
]) – The name of the job that performs baselining for the data quality monitoring job.constraints_resource (
Union
[IResolvable
,ConstraintsResourceProperty
,None
]) – The constraints resource for a monitoring job.statistics_resource (
Union
[IResolvable
,StatisticsResourceProperty
,None
]) – Configuration for monitoring constraints and monitoring statistics. These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.
- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker data_quality_baseline_config_property = sagemaker.CfnDataQualityJobDefinition.DataQualityBaselineConfigProperty( baselining_job_name="baseliningJobName", constraints_resource=sagemaker.CfnDataQualityJobDefinition.ConstraintsResourceProperty( s3_uri="s3Uri" ), statistics_resource=sagemaker.CfnDataQualityJobDefinition.StatisticsResourceProperty( s3_uri="s3Uri" ) )
Attributes
-
baselining_job_name
¶ The name of the job that performs baselining for the data quality monitoring job.
-
constraints_resource
¶ The constraints resource for a monitoring job.
-
statistics_resource
¶ Configuration for monitoring constraints and monitoring statistics.
These baseline resources are compared against the results of the current job from the series of jobs scheduled to collect data periodically.
DataQualityJobInputProperty¶
-
class
CfnDataQualityJobDefinition.
DataQualityJobInputProperty
(*, endpoint_input)¶ Bases:
object
The input for the data quality monitoring job.
Currently endpoints are supported for input.
- Parameters
endpoint_input (
Union
[IResolvable
,EndpointInputProperty
]) –CfnDataQualityJobDefinition.DataQualityJobInputProperty.EndpointInput
.- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker data_quality_job_input_property = sagemaker.CfnDataQualityJobDefinition.DataQualityJobInputProperty( endpoint_input=sagemaker.CfnDataQualityJobDefinition.EndpointInputProperty( endpoint_name="endpointName", local_path="localPath", # the properties below are optional s3_data_distribution_type="s3DataDistributionType", s3_input_mode="s3InputMode" ) )
Attributes
-
endpoint_input
¶ CfnDataQualityJobDefinition.DataQualityJobInputProperty.EndpointInput
.
EndpointInputProperty¶
-
class
CfnDataQualityJobDefinition.
EndpointInputProperty
(*, endpoint_name, local_path, s3_data_distribution_type=None, s3_input_mode=None)¶ Bases:
object
Input object for the endpoint.
- Parameters
endpoint_name (
str
) – An endpoint in customer’s account which has enabledDataCaptureConfig
enabled.local_path (
str
) – Path to the filesystem where the endpoint data is available to the container.s3_data_distribution_type (
Optional
[str
]) – Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key. Defaults toFullyReplicated
s3_input_mode (
Optional
[str
]) – Whether thePipe
orFile
is used as the input mode for transferring data for the monitoring job.Pipe
mode is recommended for large datasets.File
mode is useful for small files that fit in memory. Defaults toFile
.
- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker endpoint_input_property = sagemaker.CfnDataQualityJobDefinition.EndpointInputProperty( endpoint_name="endpointName", local_path="localPath", # the properties below are optional s3_data_distribution_type="s3DataDistributionType", s3_input_mode="s3InputMode" )
Attributes
-
endpoint_name
¶ An endpoint in customer’s account which has enabled
DataCaptureConfig
enabled.
-
local_path
¶ Path to the filesystem where the endpoint data is available to the container.
-
s3_data_distribution_type
¶ Whether input data distributed in Amazon S3 is fully replicated or sharded by an S3 key.
Defaults to
FullyReplicated
-
s3_input_mode
¶ Whether the
Pipe
orFile
is used as the input mode for transferring data for the monitoring job.Pipe
mode is recommended for large datasets.File
mode is useful for small files that fit in memory. Defaults toFile
.
MonitoringOutputConfigProperty¶
-
class
CfnDataQualityJobDefinition.
MonitoringOutputConfigProperty
(*, monitoring_outputs, kms_key_id=None)¶ Bases:
object
The output configuration for monitoring jobs.
- Parameters
monitoring_outputs (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,MonitoringOutputProperty
]]]) – Monitoring outputs for monitoring jobs. This is where the output of the periodic monitoring jobs is uploaded.kms_key_id (
Optional
[str
]) – The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker monitoring_output_config_property = sagemaker.CfnDataQualityJobDefinition.MonitoringOutputConfigProperty( monitoring_outputs=[sagemaker.CfnDataQualityJobDefinition.MonitoringOutputProperty( s3_output=sagemaker.CfnDataQualityJobDefinition.S3OutputProperty( local_path="localPath", s3_uri="s3Uri", # the properties below are optional s3_upload_mode="s3UploadMode" ) )], # the properties below are optional kms_key_id="kmsKeyId" )
Attributes
-
kms_key_id
¶ The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the model artifacts at rest using Amazon S3 server-side encryption.
-
monitoring_outputs
¶ Monitoring outputs for monitoring jobs.
This is where the output of the periodic monitoring jobs is uploaded.
- Link
- Return type
Union
[IResolvable
,List
[Union
[IResolvable
,MonitoringOutputProperty
]]]
MonitoringOutputProperty¶
-
class
CfnDataQualityJobDefinition.
MonitoringOutputProperty
(*, s3_output)¶ Bases:
object
The output object for a monitoring job.
- Parameters
s3_output (
Union
[IResolvable
,S3OutputProperty
]) – The Amazon S3 storage location where the results of a monitoring job are saved.- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker monitoring_output_property = sagemaker.CfnDataQualityJobDefinition.MonitoringOutputProperty( s3_output=sagemaker.CfnDataQualityJobDefinition.S3OutputProperty( local_path="localPath", s3_uri="s3Uri", # the properties below are optional s3_upload_mode="s3UploadMode" ) )
Attributes
-
s3_output
¶ The Amazon S3 storage location where the results of a monitoring job are saved.
MonitoringResourcesProperty¶
-
class
CfnDataQualityJobDefinition.
MonitoringResourcesProperty
(*, cluster_config)¶ Bases:
object
Identifies the resources to deploy for a monitoring job.
- Parameters
cluster_config (
Union
[IResolvable
,ClusterConfigProperty
]) – The configuration for the cluster resources used to run the processing job.- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker monitoring_resources_property = sagemaker.CfnDataQualityJobDefinition.MonitoringResourcesProperty( cluster_config=sagemaker.CfnDataQualityJobDefinition.ClusterConfigProperty( instance_count=123, instance_type="instanceType", volume_size_in_gb=123, # the properties below are optional volume_kms_key_id="volumeKmsKeyId" ) )
Attributes
-
cluster_config
¶ The configuration for the cluster resources used to run the processing job.
NetworkConfigProperty¶
-
class
CfnDataQualityJobDefinition.
NetworkConfigProperty
(*, enable_inter_container_traffic_encryption=None, enable_network_isolation=None, vpc_config=None)¶ Bases:
object
Networking options for a job, such as network traffic encryption between containers, whether to allow inbound and outbound network calls to and from containers, and the VPC subnets and security groups to use for VPC-enabled jobs.
- Parameters
enable_inter_container_traffic_encryption (
Union
[bool
,IResolvable
,None
]) – Whether to encrypt all communications between distributed processing jobs. ChooseTrue
to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.enable_network_isolation (
Union
[bool
,IResolvable
,None
]) – Whether to allow inbound and outbound network calls to and from the containers used for the processing job.vpc_config (
Union
[IResolvable
,VpcConfigProperty
,None
]) – Specifies a VPC that your training jobs and hosted models have access to. Control access to and from your training and model containers by configuring the VPC.
- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker network_config_property = sagemaker.CfnDataQualityJobDefinition.NetworkConfigProperty( enable_inter_container_traffic_encryption=False, enable_network_isolation=False, vpc_config=sagemaker.CfnDataQualityJobDefinition.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] ) )
Attributes
-
enable_inter_container_traffic_encryption
¶ Whether to encrypt all communications between distributed processing jobs.
Choose
True
to encrypt communications. Encryption provides greater security for distributed processing jobs, but the processing might take longer.
-
enable_network_isolation
¶ Whether to allow inbound and outbound network calls to and from the containers used for the processing job.
-
vpc_config
¶ Specifies a VPC that your training jobs and hosted models have access to.
Control access to and from your training and model containers by configuring the VPC.
S3OutputProperty¶
-
class
CfnDataQualityJobDefinition.
S3OutputProperty
(*, local_path, s3_uri, s3_upload_mode=None)¶ Bases:
object
The Amazon S3 storage location where the results of a monitoring job are saved.
- Parameters
local_path (
str
) – The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job. LocalPath is an absolute path for the output data.s3_uri (
str
) – A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.s3_upload_mode (
Optional
[str
]) – Whether to upload the results of the monitoring job continuously or after the job completes.
- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker s3_output_property = sagemaker.CfnDataQualityJobDefinition.S3OutputProperty( local_path="localPath", s3_uri="s3Uri", # the properties below are optional s3_upload_mode="s3UploadMode" )
Attributes
-
local_path
¶ The local path to the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
LocalPath is an absolute path for the output data.
-
s3_upload_mode
¶ Whether to upload the results of the monitoring job continuously or after the job completes.
-
s3_uri
¶ A URI that identifies the Amazon S3 storage location where Amazon SageMaker saves the results of a monitoring job.
StatisticsResourceProperty¶
-
class
CfnDataQualityJobDefinition.
StatisticsResourceProperty
(*, s3_uri=None)¶ Bases:
object
The statistics resource for a monitoring job.
- Parameters
s3_uri (
Optional
[str
]) – The Amazon S3 URI for the statistics resource.- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker statistics_resource_property = sagemaker.CfnDataQualityJobDefinition.StatisticsResourceProperty( s3_uri="s3Uri" )
Attributes
-
s3_uri
¶ The Amazon S3 URI for the statistics resource.
StoppingConditionProperty¶
-
class
CfnDataQualityJobDefinition.
StoppingConditionProperty
(*, max_runtime_in_seconds)¶ Bases:
object
Specifies a limit to how long a model training job or model compilation job can run.
It also specifies how long a managed spot training job has to complete. When the job reaches the time limit, SageMaker ends the training or compilation job. Use this API to cap model training costs.
To stop a training job, SageMaker sends the algorithm the
SIGTERM
signal, which delays job termination for 120 seconds. Algorithms can use this 120-second window to save the model artifacts, so the results of training are not lost.The training algorithms provided by SageMaker automatically save the intermediate results of a model training job when possible. This attempt to save artifacts is only a best effort case as model might not be in a state from which it can be saved. For example, if training has just started, the model might not be ready to save. When saved, this intermediate data is a valid model artifact. You can use it to create a model with
CreateModel
. .. epigraph:The Neural Topic Model (NTM) currently does not support saving intermediate model artifacts. When training NTMs, make sure that the maximum runtime is sufficient for the training job to complete.
- Parameters
max_runtime_in_seconds (
Union
[int
,float
]) – The maximum length of time, in seconds, that a training or compilation job can run. For compilation jobs, if the job does not complete during this time, aTimeOut
error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model. For all other jobs, if the job does not complete during this time, SageMaker ends the job. WhenRetryStrategy
is specified in the job request,MaxRuntimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker stopping_condition_property = sagemaker.CfnDataQualityJobDefinition.StoppingConditionProperty( max_runtime_in_seconds=123 )
Attributes
-
max_runtime_in_seconds
¶ The maximum length of time, in seconds, that a training or compilation job can run.
For compilation jobs, if the job does not complete during this time, a
TimeOut
error is generated. We recommend starting with 900 seconds and increasing as necessary based on your model.For all other jobs, if the job does not complete during this time, SageMaker ends the job. When
RetryStrategy
is specified in the job request,MaxRuntimeInSeconds
specifies the maximum time for all of the attempts in total, not each individual attempt. The default value is 1 day. The maximum value is 28 days.
VpcConfigProperty¶
-
class
CfnDataQualityJobDefinition.
VpcConfigProperty
(*, security_group_ids, subnets)¶ Bases:
object
Specifies a VPC that your training jobs and hosted models have access to.
Control access to and from your training and model containers by configuring the VPC. For more information, see Protect Endpoints by Using an Amazon Virtual Private Cloud and Protect Training Jobs by Using an Amazon Virtual Private Cloud .
- Parameters
security_group_ids (
Sequence
[str
]) – The VPC security group IDs, in the form sg-xxxxxxxx. Specify the security groups for the VPC that is specified in theSubnets
field.subnets (
Sequence
[str
]) – The ID of the subnets in the VPC to which you want to connect your training job or model. For information about the availability of specific instance types, see Supported Instance Types and Availability Zones .
- Link
- ExampleMetadata
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. import aws_cdk.aws_sagemaker as sagemaker vpc_config_property = sagemaker.CfnDataQualityJobDefinition.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] )
Attributes
-
security_group_ids
¶ The VPC security group IDs, in the form sg-xxxxxxxx.
Specify the security groups for the VPC that is specified in the
Subnets
field.
-
subnets
¶ The ID of the subnets in the VPC to which you want to connect your training job or model.
For information about the availability of specific instance types, see Supported Instance Types and Availability Zones .