Channel
- class aws_cdk.aws_stepfunctions_tasks.Channel(*, channel_name, data_source, compression_type=None, content_type=None, input_mode=None, record_wrapper_type=None, shuffle_config=None)
Bases:
object
Describes the training, validation or test dataset and the Amazon S3 location where it is stored.
- Parameters:
channel_name (
str
) – Name of the channel.data_source (
Union
[DataSource
,Dict
[str
,Any
]]) – Location of the channel data.compression_type (
Optional
[CompressionType
]) – Compression type if training data is compressed. Default: - Nonecontent_type (
Optional
[str
]) – The MIME type of the data. Default: - Noneinput_mode (
Optional
[InputMode
]) – Input mode to use for the data channel in a training job. Default: - Nonerecord_wrapper_type (
Optional
[RecordWrapperType
]) – Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format. In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don’t need to set this attribute. Default: - Noneshuffle_config (
Union
[ShuffleConfig
,Dict
[str
,Any
],None
]) – Shuffle config option for input data in a channel. Default: - None
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_stepfunctions_tasks as stepfunctions_tasks # s3_location: stepfunctions_tasks.S3Location channel = stepfunctions_tasks.Channel( channel_name="channelName", data_source=stepfunctions_tasks.DataSource( s3_data_source=stepfunctions_tasks.S3DataSource( s3_location=s3_location, # the properties below are optional attribute_names=["attributeNames"], s3_data_distribution_type=stepfunctions_tasks.S3DataDistributionType.FULLY_REPLICATED, s3_data_type=stepfunctions_tasks.S3DataType.MANIFEST_FILE ) ), # the properties below are optional compression_type=stepfunctions_tasks.CompressionType.NONE, content_type="contentType", input_mode=stepfunctions_tasks.InputMode.PIPE, record_wrapper_type=stepfunctions_tasks.RecordWrapperType.NONE, shuffle_config=stepfunctions_tasks.ShuffleConfig( seed=123 ) )
Attributes
- channel_name
Name of the channel.
- compression_type
Compression type if training data is compressed.
- Default:
None
- content_type
The MIME type of the data.
- Default:
None
- data_source
Location of the channel data.
- input_mode
Input mode to use for the data channel in a training job.
- Default:
None
- record_wrapper_type
Specify RecordIO as the value when input data is in raw format but the training algorithm requires the RecordIO format.
In this case, Amazon SageMaker wraps each individual S3 object in a RecordIO record. If the input data is already in RecordIO format, you don’t need to set this attribute.
- Default:
None
- shuffle_config
Shuffle config option for input data in a channel.
- Default:
None