Ejemplos de código para la inferencia por lotes - Amazon Bedrock

Las traducciones son generadas a través de traducción automática. En caso de conflicto entre la traducción y la version original de inglés, prevalecerá la version en inglés.

Ejemplos de código para la inferencia por lotes

Los ejemplos de código de este capítulo muestran cómo crear un trabajo de inferencia por lotes, ver información sobre el mismo y detenerlo. Seleccione un idioma para ver un ejemplo de código:

Python

Cree un JSONL archivo llamado abc.jsonl que contenga al menos el número mínimo de registros (consulteCuotas para Amazon Bedrock). Puede usar los siguientes contenidos como primera línea y entrada:

{ "recordId": "CALL0000001", "modelInput": { "anthropic_version": "bedrock-2023-05-31", "max_tokens": 1024, "messages": [ { "role": "user", "content": [ { "type": "text", "text": "Summarize the following call transcript: ..." } ] } ] } }

Cree un bucket de S3 llamado amzn-s3-demo-bucket-input y carga el archivo en él. A continuación, cree un bucket de S3 llamado amzn-s3-demo-bucket-output para escribir sus archivos de salida. Ejecute el siguiente fragmento de código para enviar un trabajo y obtener el jobArn de la respuesta:

import boto3 bedrock = boto3.client(service_name="bedrock") inputDataConfig=({ "s3InputDataConfig": { "s3Uri": "s3://amzn-s3-demo-bucket-input/abc.jsonl" } }) outputDataConfig=({ "s3OutputDataConfig": { "s3Uri": "s3://amzn-s3-demo-bucket-output/" } }) response=bedrock.create_model_invocation_job( roleArn="arn:aws:iam::123456789012:role/MyBatchInferenceRole", modelId="anthropic.claude-3-haiku-20240307-v1:0", jobName="my-batch-job", inputDataConfig=inputDataConfig, outputDataConfig=outputDataConfig ) jobArn = response.get('jobArn')

Devuelva la parte status del trabajo.

bedrock.get_model_invocation_job(jobIdentifier=jobArn)['status']

Enumere los trabajos de inferencia por lotes que Failed.

bedrock.list_model_invocation_jobs( maxResults=10, statusEquals="Failed", sortOrder="Descending" )

Detenga el trabajo que inició.

bedrock.stop_model_invocation_job(jobIdentifier=jobArn)
Java
package com.amazon.aws.sample.bedrock.inference; import com.amazonaws.services.bedrock.AmazonBedrockAsync; import com.amazonaws.services.bedrock.AmazonBedrockAsyncClientBuilder; import com.amazonaws.services.bedrock.model.CreateModelInvocationJobRequest; import com.amazonaws.services.bedrock.model.CreateModelInvocationJobResult; import com.amazonaws.services.bedrock.model.GetModelInvocationJobRequest; import com.amazonaws.services.bedrock.model.GetModelInvocationJobResult; import com.amazonaws.services.bedrock.model.InvocationJobInputDataConfig; import com.amazonaws.services.bedrock.model.InvocationJobOutputDataConfig; import com.amazonaws.services.bedrock.model.InvocationJobS3InputDataConfig; import com.amazonaws.services.bedrock.model.InvocationJobS3OutputDataConfig; import com.amazonaws.services.bedrock.model.ListModelInvocationJobsRequest; import com.amazonaws.services.bedrock.model.ListModelInvocationJobsResult; import com.amazonaws.services.bedrock.model.StopModelInvocationJobRequest; import com.amazonaws.services.bedrock.model.StopModelInvocationJobResult; public class BedrockAsyncInference { private final AmazonBedrockAsync amazonBedrockAsyncClient = AmazonBedrockAsyncClientBuilder.defaultClient(); public void createModelInvokeJobSampleCode() { final InvocationJobS3InputDataConfig invocationJobS3InputDataConfig = new InvocationJobS3InputDataConfig() .withS3Uri("s3://batch-input/abc.jsonl") .withS3InputFormat("JSONL"); final InvocationJobInputDataConfig inputDataConfig = new InvocationJobInputDataConfig() .withS3InputDataConfig(invocationJobS3InputDataConfig); final InvocationJobS3OutputDataConfig invocationJobS3OutputDataConfig = new InvocationJobS3OutputDataConfig() .withS3Uri("s3://batch-output/"); final InvocationJobOutputDataConfig invocationJobOutputDataConfig = new InvocationJobOutputDataConfig() .withS3OutputDataConfig(invocationJobS3OutputDataConfig); final CreateModelInvocationJobRequest createModelInvocationJobRequest = new CreateModelInvocationJobRequest() .withModelId("anthropic.claude-3-haiku-20240307-v1:0") .withJobName("unique-job-name") .withRoleArn("arn:aws:iam::123456789:role/bedrock-role") .withClientRequestToken("Client-token") .withInputDataConfig(inputDataConfig) .withOutputDataConfig(invocationJobOutputDataConfig); final CreateModelInvocationJobResult createModelInvocationJobResult = amazonBedrockAsyncClient .createModelInvocationJob(createModelInvocationJobRequest); System.out.println(createModelInvocationJobResult.getJobArn()); } public void getModelInvokeJobSampleCode() { final GetModelInvocationJobRequest getModelInvocationJobRequest = new GetModelInvocationJobRequest() .withJobIdentifier("jobArn"); final GetModelInvocationJobResult getModelInvocationJobResult = amazonBedrockAsyncClient .getModelInvocationJob(getModelInvocationJobRequest); } public void listModelInvokeJobSampleCode() { final ListModelInvocationJobsRequest listModelInvocationJobsRequest = new ListModelInvocationJobsRequest() .withMaxResults(10) .withNameContains("matchin-string"); final ListModelInvocationJobsResult listModelInvocationJobsResult = amazonBedrockAsyncClient .listModelInvocationJobs(listModelInvocationJobsRequest); } public void stopModelInvokeJobSampleCode() { final StopModelInvocationJobRequest stopModelInvocationJobRequest = new StopModelInvocationJobRequest() .withJobIdentifier("jobArn"); final StopModelInvocationJobResult stopModelInvocationJobResult = amazonBedrockAsyncClient .stopModelInvocationJob(stopModelInvocationJobRequest); } }