Using a manifest file to import images - Rekognition

Using a manifest file to import images

You can create a dataset using an Amazon SageMaker Ground Truth format manifest file. You can use the manifest file from an Amazon SageMaker Ground Truth job. If your images and labels aren't in the format of a SageMaker Ground Truth manifest file, you can create a SageMaker format manifest file and use it to import your labeled images.

The CreateDataset operation is updated to allow you to optionally specify tags when creating a new dataset. Tags are key-value pairs that you can use to categorize and manage your resources.

Creating a dataset with a SageMaker Ground Truth manifest file (Console)

The following procedure shows you how to create a dataset by using a SageMaker Ground Truth format manifest file.

  1. Create a manifest file for your training dataset by doing one of the following:

    If you want to create a test dataset, repeat step 1 to create the test dataset.

  2. Open the Amazon Rekognition console at https://console.aws.amazon.com/rekognition/.

  3. Choose Use Custom Labels.

  4. Choose Get started.

  5. In the left navigation pane, choose Projects.

  6. In the Projects page, choose the project to which you want to add a dataset. The details page for your project is displayed.

  7. Choose Create dataset. The Create dataset page is shown.

  8. In Starting configuration, choose either Start with a single dataset or Start with a training dataset. To create a higher quality model, we recommend starting with separate training and test datasets.

    Single dataset
    1. In the Training dataset details section, choose Import images labeled by SageMaker Ground Truth.

    2. In .manifest file location enter the location of the manifest file that you created in step 1.

    3. Choose Create Dataset. The datasets page for your project opens.

    Separate training and test datasets
    1. In the Training dataset details section, choose Import images labeled by SageMaker Ground Truth.

    2. In .manifest file location enter the location of the training dataset manifest file you created in step 1.

    3. In the Test dataset details section, choose Import images labeled by SageMaker Ground Truth.

      Note

      Your training and test datasets can have different image sources.

    4. In .manifest file location enter the location of the test dataset manifest file you created in step 1.

    5. Choose Create Datasets. The datasets page for your project opens.

  9. If you need to add or change labels, do Labeling images.

  10. Follow the steps in Training a model (Console) to train your model.

Creating a dataset with a SageMaker Ground Truth manifest file (SDK)

The following procedure shows you how to create training or test datasets from a manifest file by using the CreateDataset API.

You can use an existing manifest file, such as the output from an SageMaker Ground Truth job, or create your own manifest file.

  1. If you haven't already done so, install and configure the AWS CLI and the AWS SDKs. For more information, see Step 4: Set up the AWS CLI and AWS SDKs.

  2. Create a manifest file for your training dataset by doing one of the following:

    If you want to create a test dataset, repeat step 2 to create the test dataset.

  3. Use the following example code to create the training and test dataset.

    AWS CLI

    Use the following code to create a dataset. Replace the following:

    • project_arn — the ARN of the project that you want to add the test dataset to.

    • type — the type of dataset that you want to create (TRAIN or TEST)

    • bucket — the bucket that contains the manifest file for the dataset.

    • manifest_file — the path and file name of the manifest file.

    aws rekognition create-dataset --project-arn project_arn \ --dataset-type type \ --dataset-source '{ "GroundTruthManifest": { "S3Object": { "Bucket": "bucket", "Name": "manifest_file" } } }' \ --profile custom-labels-access --tags '{"key1": "value1", "key2": "value2"}'
    Python

    Use the following values to create a dataset. Supply the following command line parameters:

    • project_arn — the ARN of the project that you want to add the test dataset to.

    • dataset_type — the type of dataset that you want to create (train or test).

    • bucket — the bucket that contains the manifest file for the dataset.

    • manifest_file — the path and file name of the manifest file.

    #Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved. #PDX-License-Identifier: MIT-0 (For details, see https://github.com/awsdocs/amazon-rekognition-custom-labels-developer-guide/blob/master/LICENSE-SAMPLECODE.) import argparse import logging import time import json import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) def create_dataset(rek_client, project_arn, dataset_type, bucket, manifest_file): """ Creates an Amazon Rekognition Custom Labels dataset. :param rek_client: The Amazon Rekognition Custom Labels Boto3 client. :param project_arn: The ARN of the project in which you want to create a dataset. :param dataset_type: The type of the dataset that you want to create (train or test). :param bucket: The S3 bucket that contains the manifest file. :param manifest_file: The path and filename of the manifest file. """ try: #Create the project logger.info("Creating %s dataset for project %s",dataset_type, project_arn) dataset_type = dataset_type.upper() dataset_source = json.loads( '{ "GroundTruthManifest": { "S3Object": { "Bucket": "' + bucket + '", "Name": "' + manifest_file + '" } } }' ) response = rek_client.create_dataset( ProjectArn=project_arn, DatasetType=dataset_type, DatasetSource=dataset_source ) dataset_arn=response['DatasetArn'] logger.info("dataset ARN: %s",dataset_arn) finished=False while finished is False: dataset=rek_client.describe_dataset(DatasetArn=dataset_arn) status=dataset['DatasetDescription']['Status'] if status == "CREATE_IN_PROGRESS": logger.info("Creating dataset: %s ",dataset_arn) time.sleep(5) continue if status == "CREATE_COMPLETE": logger.info("Dataset created: %s", dataset_arn) finished=True continue if status == "CREATE_FAILED": error_message = f"Dataset creation failed: {status} : {dataset_arn}" logger.exception(error_message) raise Exception (error_message) error_message = f"Failed. Unexpected state for dataset creation: {status} : {dataset_arn}" logger.exception(error_message) raise Exception(error_message) return dataset_arn except ClientError as err: logger.exception("Couldn't create dataset: %s",err.response['Error']['Message']) raise def add_arguments(parser): """ Adds command line arguments to the parser. :param parser: The command line parser. """ parser.add_argument( "project_arn", help="The ARN of the project in which you want to create the dataset." ) parser.add_argument( "dataset_type", help="The type of the dataset that you want to create (train or test)." ) parser.add_argument( "bucket", help="The S3 bucket that contains the manifest file." ) parser.add_argument( "manifest_file", help="The path and filename of the manifest file." ) def main(): logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") try: #Get command line arguments. parser = argparse.ArgumentParser(usage=argparse.SUPPRESS) add_arguments(parser) args = parser.parse_args() print(f"Creating {args.dataset_type} dataset for project {args.project_arn}") #Create the dataset. session = boto3.Session(profile_name='custom-labels-access') rekognition_client = session.client("rekognition") dataset_arn=create_dataset(rekognition_client, args.project_arn, args.dataset_type, args.bucket, args.manifest_file) print(f"Finished creating dataset: {dataset_arn}") except ClientError as err: logger.exception("Problem creating dataset: %s", err) print(f"Problem creating dataset: {err}") if __name__ == "__main__": main()
    Java V2

    Use the following values to create a dataset. Supply the following command line parameters:

    • project_arn — the ARN of the project that you want to add the test dataset to.

    • dataset_type — the type of dataset that you want to create (train or test).

    • bucket — the bucket that contains the manifest file for the dataset.

    • manifest_file — the path and file name of the manifest file.

    /* Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. SPDX-License-Identifier: Apache-2.0 */ package com.example.rekognition; import software.amazon.awssdk.auth.credentials.ProfileCredentialsProvider; import software.amazon.awssdk.regions.Region; import software.amazon.awssdk.services.rekognition.RekognitionClient; import software.amazon.awssdk.services.rekognition.model.CreateDatasetRequest; import software.amazon.awssdk.services.rekognition.model.CreateDatasetResponse; import software.amazon.awssdk.services.rekognition.model.DatasetDescription; import software.amazon.awssdk.services.rekognition.model.DatasetSource; import software.amazon.awssdk.services.rekognition.model.DatasetStatus; import software.amazon.awssdk.services.rekognition.model.DatasetType; import software.amazon.awssdk.services.rekognition.model.DescribeDatasetRequest; import software.amazon.awssdk.services.rekognition.model.DescribeDatasetResponse; import software.amazon.awssdk.services.rekognition.model.GroundTruthManifest; import software.amazon.awssdk.services.rekognition.model.RekognitionException; import software.amazon.awssdk.services.rekognition.model.S3Object; import java.util.logging.Level; import java.util.logging.Logger; public class CreateDatasetManifestFiles { public static final Logger logger = Logger.getLogger(CreateDatasetManifestFiles.class.getName()); public static String createMyDataset(RekognitionClient rekClient, String projectArn, String datasetType, String bucket, String name) throws Exception, RekognitionException { try { logger.log(Level.INFO, "Creating {0} dataset for project : {1} from s3://{2}/{3} ", new Object[] { datasetType, projectArn, bucket, name }); DatasetType requestDatasetType = null; switch (datasetType) { case "train": requestDatasetType = DatasetType.TRAIN; break; case "test": requestDatasetType = DatasetType.TEST; break; default: logger.log(Level.SEVERE, "Could not create dataset. Unrecognized dataset type: {0}", datasetType); throw new Exception("Could not create dataset. Unrecognized dataset type: " + datasetType); } GroundTruthManifest groundTruthManifest = GroundTruthManifest.builder() .s3Object(S3Object.builder().bucket(bucket).name(name).build()).build(); DatasetSource datasetSource = DatasetSource.builder().groundTruthManifest(groundTruthManifest).build(); CreateDatasetRequest createDatasetRequest = CreateDatasetRequest.builder().projectArn(projectArn) .datasetType(requestDatasetType).datasetSource(datasetSource).build(); CreateDatasetResponse response = rekClient.createDataset(createDatasetRequest); boolean created = false; do { DescribeDatasetRequest describeDatasetRequest = DescribeDatasetRequest.builder() .datasetArn(response.datasetArn()).build(); DescribeDatasetResponse describeDatasetResponse = rekClient.describeDataset(describeDatasetRequest); DatasetDescription datasetDescription = describeDatasetResponse.datasetDescription(); DatasetStatus status = datasetDescription.status(); logger.log(Level.INFO, "Creating dataset ARN: {0} ", response.datasetArn()); switch (status) { case CREATE_COMPLETE: logger.log(Level.INFO, "Dataset created"); created = true; break; case CREATE_IN_PROGRESS: Thread.sleep(5000); break; case CREATE_FAILED: String error = "Dataset creation failed: " + datasetDescription.statusAsString() + " " + datasetDescription.statusMessage() + " " + response.datasetArn(); logger.log(Level.SEVERE, error); throw new Exception(error); default: String unexpectedError = "Unexpected creation state: " + datasetDescription.statusAsString() + " " + datasetDescription.statusMessage() + " " + response.datasetArn(); logger.log(Level.SEVERE, unexpectedError); throw new Exception(unexpectedError); } } while (created == false); return response.datasetArn(); } catch (RekognitionException e) { logger.log(Level.SEVERE, "Could not create dataset: {0}", e.getMessage()); throw e; } } public static void main(String[] args) { String datasetType = null; String bucket = null; String name = null; String projectArn = null; String datasetArn = null; final String USAGE = "\n" + "Usage: " + "<project_arn> <dataset_type> <dataset_arn>\n\n" + "Where:\n" + " project_arn - the ARN of the project that you want to add copy the datast to.\n\n" + " dataset_type - the type of the dataset that you want to create (train or test).\n\n" + " bucket - the S3 bucket that contains the manifest file.\n\n" + " name - the location and name of the manifest file within the bucket.\n\n"; if (args.length != 4) { System.out.println(USAGE); System.exit(1); } projectArn = args[0]; datasetType = args[1]; bucket = args[2]; name = args[3]; try { // Get the Rekognition client RekognitionClient rekClient = RekognitionClient.builder() .credentialsProvider(ProfileCredentialsProvider.create("custom-labels-access")) .region(Region.US_WEST_2) .build(); // Create the dataset datasetArn = createMyDataset(rekClient, projectArn, datasetType, bucket, name); System.out.println(String.format("Created dataset: %s", datasetArn)); rekClient.close(); } catch (RekognitionException rekError) { logger.log(Level.SEVERE, "Rekognition client error: {0}", rekError.getMessage()); System.exit(1); } catch (Exception rekError) { logger.log(Level.SEVERE, "Error: {0}", rekError.getMessage()); System.exit(1); } } }
  4. If you need to add or change labels, see Managing Labels (SDK).

  5. Follow the steps in Training a model (SDK) to train your model.

Create dataset request

The following is the foramt of the CreateDataset operation request:

{ "DatasetSource": { "DatasetArn": "string", "GroundTruthManifest": { "S3Object": { "Bucket": "string", "Name": "string", "Version": "string" } } }, "DatasetType": "string", "ProjectArn": "string", "Tags": { "string": "string" } }