Amazon ECS Construct Library
This package contains constructs for working with Amazon Elastic Container Service (Amazon ECS).
Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service.
For further information on Amazon ECS, see the Amazon ECS documentation
The following example creates an Amazon ECS cluster, adds capacity to it, and runs a service on it:
# vpc: ec2.Vpc
# Create an ECS cluster
cluster = ecs.Cluster(self, "Cluster", vpc=vpc)
# Add capacity to it
cluster.add_capacity("DefaultAutoScalingGroupCapacity",
instance_type=ec2.InstanceType("t2.xlarge"),
desired_capacity=3
)
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("DefaultContainer",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=512
)
# Instantiate an Amazon ECS Service
ecs_service = ecs.Ec2Service(self, "Service",
cluster=cluster,
task_definition=task_definition
)
For a set of constructs defining common ECS architectural patterns, see the aws-cdk-lib/aws-ecs-patterns
package.
Launch Types: AWS Fargate vs Amazon EC2 vs AWS ECS Anywhere
There are three sets of constructs in this library:
Use the
Ec2TaskDefinition
andEc2Service
constructs to run tasks on Amazon EC2 instances running in your account.Use the
FargateTaskDefinition
andFargateService
constructs to run tasks on instances that are managed for you by AWS.Use the
ExternalTaskDefinition
andExternalService
constructs to run AWS ECS Anywhere tasks on self-managed infrastructure.
Here are the main differences:
Amazon EC2: instances are under your control. Complete control of task to host allocation. Required to specify at least a memory reservation or limit for every container. Can use Host, Bridge and AwsVpc networking modes. Can attach Classic Load Balancer. Can share volumes between container and host.
AWS Fargate: tasks run on AWS-managed instances, AWS manages task to host allocation for you. Requires specification of memory and cpu sizes at the taskdefinition level. Only supports AwsVpc networking modes and Application/Network Load Balancers. Only the AWS log driver is supported. Many host features are not supported such as adding kernel capabilities and mounting host devices/volumes inside the container.
AWS ECS Anywhere: tasks are run and managed by AWS ECS Anywhere on infrastructure owned by the customer. Bridge, Host and None networking modes are supported. Does not support autoscaling, load balancing, cloudmap or attachment of volumes.
For more information on Amazon EC2 vs AWS Fargate, networking and ECS Anywhere see the AWS Documentation: AWS Fargate, Task Networking, ECS Anywhere
Clusters
A Cluster
defines the infrastructure to run your
tasks on. You can run many tasks on a single cluster.
The following code creates a cluster that can run AWS Fargate tasks:
# vpc: ec2.Vpc
cluster = ecs.Cluster(self, "Cluster",
vpc=vpc
)
To encrypt the fargate ephemeral storage configure a KMS key.
# key: kms.Key
cluster = ecs.Cluster(self, "Cluster",
managed_storage_configuration=ecs.ManagedStorageConfiguration(
fargate_ephemeral_storage_kms_key=key
)
)
The following code imports an existing cluster using the ARN which can be used to import an Amazon ECS service either EC2 or Fargate.
cluster_arn = "arn:aws:ecs:us-east-1:012345678910:cluster/clusterName"
cluster = ecs.Cluster.from_cluster_arn(self, "Cluster", cluster_arn)
To use tasks with Amazon EC2 launch-type, you have to add capacity to the cluster in order for tasks to be scheduled on your instances. Typically, you add an AutoScalingGroup with instances running the latest Amazon ECS-optimized AMI to the cluster. There is a method to build and add such an AutoScalingGroup automatically, or you can supply a customized AutoScalingGroup that you construct yourself. It’s possible to add multiple AutoScalingGroups with various instance types.
The following example creates an Amazon ECS cluster and adds capacity to it:
# vpc: ec2.Vpc
cluster = ecs.Cluster(self, "Cluster",
vpc=vpc
)
# Either add default capacity
cluster.add_capacity("DefaultAutoScalingGroupCapacity",
instance_type=ec2.InstanceType("t2.xlarge"),
desired_capacity=3
)
# Or add customized capacity. Be sure to start the Amazon ECS-optimized AMI.
auto_scaling_group = autoscaling.AutoScalingGroup(self, "ASG",
vpc=vpc,
instance_type=ec2.InstanceType("t2.xlarge"),
machine_image=ecs.EcsOptimizedImage.amazon_linux(),
# Or use Amazon ECS-Optimized Amazon Linux 2 AMI
# machineImage: EcsOptimizedImage.amazonLinux2(),
desired_capacity=3
)
capacity_provider = ecs.AsgCapacityProvider(self, "AsgCapacityProvider",
auto_scaling_group=auto_scaling_group
)
cluster.add_asg_capacity_provider(capacity_provider)
If you omit the property vpc
, the construct will create a new VPC with two AZs.
By default, all machine images will auto-update to the latest version on each deployment, causing a replacement of the instances in your AutoScalingGroup if the AMI has been updated since the last deployment.
If task draining is enabled, ECS will transparently reschedule tasks on to the new
instances before terminating your old instances. If you have disabled task draining,
the tasks will be terminated along with the instance. To prevent that, you
can pick a non-updating AMI by passing cacheInContext: true
, but be sure
to periodically update to the latest AMI manually by using the CDK CLI
context management commands:
# vpc: ec2.Vpc
auto_scaling_group = autoscaling.AutoScalingGroup(self, "ASG",
machine_image=ecs.EcsOptimizedImage.amazon_linux(cached_in_context=True),
vpc=vpc,
instance_type=ec2.InstanceType("t2.micro")
)
To use LaunchTemplate
with AsgCapacityProvider
, make sure to specify the userData
in the LaunchTemplate
:
# vpc: ec2.Vpc
launch_template = ec2.LaunchTemplate(self, "ASG-LaunchTemplate",
instance_type=ec2.InstanceType("t3.medium"),
machine_image=ecs.EcsOptimizedImage.amazon_linux2(),
user_data=ec2.UserData.for_linux()
)
auto_scaling_group = autoscaling.AutoScalingGroup(self, "ASG",
vpc=vpc,
mixed_instances_policy=autoscaling.MixedInstancesPolicy(
instances_distribution=autoscaling.InstancesDistribution(
on_demand_percentage_above_base_capacity=50
),
launch_template=launch_template
)
)
cluster = ecs.Cluster(self, "Cluster", vpc=vpc)
capacity_provider = ecs.AsgCapacityProvider(self, "AsgCapacityProvider",
auto_scaling_group=auto_scaling_group,
machine_image_type=ecs.MachineImageType.AMAZON_LINUX_2
)
cluster.add_asg_capacity_provider(capacity_provider)
The following code retrieve the Amazon Resource Names (ARNs) of tasks that are a part of a specified ECS cluster. It’s useful when you want to grant permissions to a task to access other AWS resources.
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
task_aRNs = cluster.arn_for_tasks("*") # arn:aws:ecs:<region>:<regionId>:task/<clusterName>/*
# Grant the task permission to access other AWS resources
task_definition.add_to_task_role_policy(
iam.PolicyStatement(
actions=["ecs:UpdateTaskProtection"],
resources=[task_aRNs]
))
To manage task protection settings in an ECS cluster, you can use the grantTaskProtection
method.
This method grants the ecs:UpdateTaskProtection
permission to a specified IAM entity.
# Assume 'cluster' is an instance of ecs.Cluster
# cluster: ecs.Cluster
# task_role: iam.Role
# Grant ECS Task Protection permissions to the role
# Now 'taskRole' has the 'ecs:UpdateTaskProtection' permission on all tasks in the cluster
cluster.grant_task_protection(task_role)
Bottlerocket
Bottlerocket is a Linux-based open source operating system that is purpose-built by AWS for running containers. You can launch Amazon ECS container instances with the Bottlerocket AMI.
The following example will create a capacity with self-managed Amazon EC2 capacity of 2 c5.large
Linux instances running with Bottlerocket
AMI.
The following example adds Bottlerocket capacity to the cluster:
# cluster: ecs.Cluster
cluster.add_capacity("bottlerocket-asg",
min_capacity=2,
instance_type=ec2.InstanceType("c5.large"),
machine_image=ecs.BottleRocketImage()
)
You can also specify an NVIDIA-compatible AMI such as in this example:
# cluster: ecs.Cluster
cluster.add_capacity("bottlerocket-asg",
instance_type=ec2.InstanceType("p3.2xlarge"),
machine_image=ecs.BottleRocketImage(
variant=ecs.BottlerocketEcsVariant.AWS_ECS_2_NVIDIA
)
)
ARM64 (Graviton) Instances
To launch instances with ARM64 hardware, you can use the Amazon ECS-optimized Amazon Linux 2 (arm64) AMI. Based on Amazon Linux 2, this AMI is recommended for use when launching your EC2 instances that are powered by Arm-based AWS Graviton Processors.
# cluster: ecs.Cluster
cluster.add_capacity("graviton-cluster",
min_capacity=2,
instance_type=ec2.InstanceType("c6g.large"),
machine_image=ecs.EcsOptimizedImage.amazon_linux2(ecs.AmiHardwareType.ARM)
)
Bottlerocket is also supported:
# cluster: ecs.Cluster
cluster.add_capacity("graviton-cluster",
min_capacity=2,
instance_type=ec2.InstanceType("c6g.large"),
machine_image_type=ecs.MachineImageType.BOTTLEROCKET
)
Amazon Linux 2 (Neuron) Instances
To launch Amazon EC2 Inf1, Trn1 or Inf2 instances, you can use the Amazon ECS optimized Amazon Linux 2 (Neuron) AMI. It comes pre-configured with AWS Inferentia and AWS Trainium drivers and the AWS Neuron runtime for Docker which makes running machine learning inference workloads easier on Amazon ECS.
# cluster: ecs.Cluster
cluster.add_capacity("neuron-cluster",
min_capacity=2,
instance_type=ec2.InstanceType("inf1.xlarge"),
machine_image=ecs.EcsOptimizedImage.amazon_linux2(ecs.AmiHardwareType.NEURON)
)
Spot Instances
To add spot instances into the cluster, you must specify the spotPrice
in the ecs.AddCapacityOptions
and optionally enable the spotInstanceDraining
property.
# cluster: ecs.Cluster
# Add an AutoScalingGroup with spot instances to the existing cluster
cluster.add_capacity("AsgSpot",
max_capacity=2,
min_capacity=2,
desired_capacity=2,
instance_type=ec2.InstanceType("c5.xlarge"),
spot_price="0.0735",
# Enable the Automated Spot Draining support for Amazon ECS
spot_instance_draining=True
)
SNS Topic Encryption
When the ecs.AddCapacityOptions
that you provide has a non-zero taskDrainTime
(the default) then an SNS topic and Lambda are created to ensure that the
cluster’s instances have been properly drained of tasks before terminating. The SNS Topic is sent the instance-terminating lifecycle event from the AutoScalingGroup,
and the Lambda acts on that event. If you wish to engage server-side encryption for this SNS Topic
then you may do so by providing a KMS key for the topicEncryptionKey
property of ecs.AddCapacityOptions
.
# Given
# cluster: ecs.Cluster
# key: kms.Key
# Then, use that key to encrypt the lifecycle-event SNS Topic.
cluster.add_capacity("ASGEncryptedSNS",
instance_type=ec2.InstanceType("t2.xlarge"),
desired_capacity=3,
topic_encryption_key=key
)
Task definitions
A task definition describes what a single copy of a task should look like. A task definition has one or more containers; typically, it has one main container (the default container is the first one that’s added to the task definition, and it is marked essential) and optionally some supporting containers which are used to support the main container, doings things like upload logs or metrics to monitoring services.
To run a task or service with Amazon EC2 launch type, use the Ec2TaskDefinition
. For AWS Fargate tasks/services, use the
FargateTaskDefinition
. For AWS ECS Anywhere use the ExternalTaskDefinition
. These classes
provide simplified APIs that only contain properties relevant for each specific launch type.
For a FargateTaskDefinition
, specify the task size (memoryLimitMiB
and cpu
):
fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
memory_limit_mi_b=512,
cpu=256
)
On Fargate Platform Version 1.4.0 or later, you may specify up to 200GiB of ephemeral storage:
fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
memory_limit_mi_b=512,
cpu=256,
ephemeral_storage_gi_b=100
)
To specify the process namespace to use for the containers in the task, use the pidMode
property:
fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
runtime_platform=ecs.RuntimePlatform(
operating_system_family=ecs.OperatingSystemFamily.LINUX,
cpu_architecture=ecs.CpuArchitecture.ARM64
),
memory_limit_mi_b=512,
cpu=256,
pid_mode=ecs.PidMode.TASK
)
Note: pidMode
is only supported for tasks that are hosted on AWS Fargate if the tasks are using platform version 1.4.0
or later (Linux). Only the task
option is supported for Linux containers. pidMode
isn’t supported for Windows containers on Fargate.
If pidMode
is specified for a Fargate task, then runtimePlatform.operatingSystemFamily
must also be specified.
To add containers to a task definition, call addContainer()
:
fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
memory_limit_mi_b=512,
cpu=256
)
container = fargate_task_definition.add_container("WebContainer",
# Use an image from DockerHub
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
)
For an Ec2TaskDefinition
:
ec2_task_definition = ecs.Ec2TaskDefinition(self, "TaskDef",
network_mode=ecs.NetworkMode.BRIDGE
)
container = ec2_task_definition.add_container("WebContainer",
# Use an image from DockerHub
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=1024
)
For an ExternalTaskDefinition
:
external_task_definition = ecs.ExternalTaskDefinition(self, "TaskDef")
container = external_task_definition.add_container("WebContainer",
# Use an image from DockerHub
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=1024
)
You can specify container properties when you add them to the task definition, or with various methods, e.g.:
To add a port mapping when adding a container to the task definition, specify the portMappings
option:
# task_definition: ecs.TaskDefinition
task_definition.add_container("WebContainer",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=1024,
port_mappings=[ecs.PortMapping(container_port=3000)]
)
To add port mappings directly to a container definition, call addPortMappings()
:
# container: ecs.ContainerDefinition
container.add_port_mappings(
container_port=3000
)
Sometimes it is useful to be able to configure port ranges for a container, e.g. to run applications such as game servers and real-time streaming which typically require multiple ports to be opened simultaneously. This feature is supported on both Linux and Windows operating systems for both the EC2 and AWS Fargate launch types. There is a maximum limit of 100 port ranges per container, and you cannot specify overlapping port ranges.
Docker recommends that you turn off the docker-proxy
in the Docker daemon config file when you have a large number of ports.
For more information, see Issue #11185 on the GitHub website.
# container: ecs.ContainerDefinition
container.add_port_mappings(
container_port=ecs.ContainerDefinition.CONTAINER_PORT_USE_RANGE,
container_port_range="8080-8081"
)
To add data volumes to a task definition, call addVolume()
:
fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
memory_limit_mi_b=512,
cpu=256
)
volume = {
# Use an Elastic FileSystem
"name": "mydatavolume",
"efs_volume_configuration": {
"file_system_id": "EFS"
}
}
container = fargate_task_definition.add_volume(volume)
Note: ECS Anywhere doesn’t support volume attachments in the task definition.
To use a TaskDefinition that can be used with either Amazon EC2 or
AWS Fargate launch types, use the TaskDefinition
construct.
When creating a task definition you have to specify what kind of tasks you intend to run: Amazon EC2, AWS Fargate, or both. The following example uses both:
task_definition = ecs.TaskDefinition(self, "TaskDef",
memory_mi_b="512",
cpu="256",
network_mode=ecs.NetworkMode.AWS_VPC,
compatibility=ecs.Compatibility.EC2_AND_FARGATE
)
To grant a principal permission to run your TaskDefinition
, you can use the TaskDefinition.grantRun()
method:
# role: iam.IGrantable
task_def = ecs.TaskDefinition(self, "TaskDef",
cpu="512",
memory_mi_b="512",
compatibility=ecs.Compatibility.EC2_AND_FARGATE
)
# Gives role required permissions to run taskDef
task_def.grant_run(role)
To deploy containerized applications that require the allocation of standard input (stdin) or a terminal (tty), use the interactive
property.
This parameter corresponds to OpenStdin
in the Create a container section of the Docker Remote API
and the --interactive
option to docker run.
# task_definition: ecs.TaskDefinition
task_definition.add_container("Container",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
interactive=True
)
Images
Images supply the software that runs inside the container. Images can be obtained from either DockerHub or from ECR repositories, built directly from a local Dockerfile, or use an existing tarball.
ecs.ContainerImage.fromRegistry(imageName)
: use a public image.ecs.ContainerImage.fromRegistry(imageName, { credentials: mySecret })
: use a private image that requires credentials.ecs.ContainerImage.fromEcrRepository(repo, tagOrDigest)
: use the given ECR repository as the image to start. If no tag or digest is provided, “latest” is assumed.ecs.ContainerImage.fromAsset('./image')
: build and upload an image directly from aDockerfile
in your source directory.ecs.ContainerImage.fromDockerImageAsset(asset)
: uses an existingaws-cdk-lib/aws-ecr-assets.DockerImageAsset
as a container image.ecs.ContainerImage.fromTarball(file)
: use an existing tarball.new ecs.TagParameterContainerImage(repository)
: use the given ECR repository as the image but a CloudFormation parameter as the tag.
Environment variables
To pass environment variables to the container, you can use the environment
, environmentFiles
, and secrets
props.
# secret: secretsmanager.Secret
# db_secret: secretsmanager.Secret
# parameter: ssm.StringParameter
# task_definition: ecs.TaskDefinition
# s3_bucket: s3.Bucket
new_container = task_definition.add_container("container",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=1024,
environment={ # clear text, not for sensitive data
"STAGE": "prod"},
environment_files=[ # list of environment files hosted either on local disk or S3
ecs.EnvironmentFile.from_asset("./demo-env-file.env"),
ecs.EnvironmentFile.from_bucket(s3_bucket, "assets/demo-env-file.env")],
secrets={ # Retrieved from AWS Secrets Manager or AWS Systems Manager Parameter Store at container start-up.
"SECRET": ecs.Secret.from_secrets_manager(secret),
"DB_PASSWORD": ecs.Secret.from_secrets_manager(db_secret, "password"), # Reference a specific JSON field, (requires platform version 1.4.0 or later for Fargate tasks)
"API_KEY": ecs.Secret.from_secrets_manager_version(secret, ecs.SecretVersionInfo(version_id="12345"), "apiKey"), # Reference a specific version of the secret by its version id or version stage (requires platform version 1.4.0 or later for Fargate tasks)
"PARAMETER": ecs.Secret.from_ssm_parameter(parameter)}
)
new_container.add_environment("QUEUE_NAME", "MyQueue")
new_container.add_secret("API_KEY", ecs.Secret.from_secrets_manager(secret))
new_container.add_secret("DB_PASSWORD", ecs.Secret.from_secrets_manager(secret, "password"))
The task execution role is automatically granted read permissions on the secrets/parameters. Further details provided in the AWS documentation about specifying environment variables.
Linux parameters
To apply additional linux-specific options related to init process and memory management to the container, use the linuxParameters
property:
# task_definition: ecs.TaskDefinition
task_definition.add_container("container",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=1024,
linux_parameters=ecs.LinuxParameters(self, "LinuxParameters",
init_process_enabled=True,
shared_memory_size=1024,
max_swap=Size.mebibytes(5000),
swappiness=90
)
)
System controls
To set system controls (kernel parameters) on the container, use the systemControls
prop:
# task_definition: ecs.TaskDefinition
task_definition.add_container("container",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=1024,
system_controls=[ecs.SystemControl(
namespace="net.ipv6.conf.all.default.disable_ipv6",
value="1"
)
]
)
Restart policy
To enable a restart policy for the container, set enableRestartPolicy
to true and also specify
restartIgnoredExitCodes
and restartAttemptPeriod
if necessary.
# task_definition: ecs.TaskDefinition
task_definition.add_container("container",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
enable_restart_policy=True,
restart_ignored_exit_codes=[0, 127],
restart_attempt_period=Duration.seconds(360)
)
Docker labels
You can add labels to the container with the dockerLabels
property or with the addDockerLabel
method:
# task_definition: ecs.TaskDefinition
container = task_definition.add_container("cont",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_limit_mi_b=1024,
docker_labels={
"foo": "bar"
}
)
container.add_docker_label("label", "value")
Using Windows containers on Fargate
AWS Fargate supports Amazon ECS Windows containers. For more details, please see this blog post
# Create a Task Definition for the Windows container to start
task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
runtime_platform=ecs.RuntimePlatform(
operating_system_family=ecs.OperatingSystemFamily.WINDOWS_SERVER_2019_CORE,
cpu_architecture=ecs.CpuArchitecture.X86_64
),
cpu=1024,
memory_limit_mi_b=2048
)
task_definition.add_container("windowsservercore",
logging=ecs.LogDriver.aws_logs(stream_prefix="win-iis-on-fargate"),
port_mappings=[ecs.PortMapping(container_port=80)],
image=ecs.ContainerImage.from_registry("mcr.microsoft.com/windows/servercore/iis:windowsservercore-ltsc2019")
)
Using Windows authentication with gMSA
Amazon ECS supports Active Directory authentication for Linux containers through a special kind of service account called a group Managed Service Account (gMSA). For more details, please see the product documentation on how to implement on Windows containers, or this blog post on how to implement on Linux containers.
There are two types of CredentialSpecs, domained-join or domainless. Both types support creation from a S3 bucket, a SSM parameter, or by directly specifying a location for the file in the constructor.
A domian-joined gMSA container looks like:
# Make sure the task definition's execution role has permissions to read from the S3 bucket or SSM parameter where the CredSpec file is stored.
# parameter: ssm.IParameter
# task_definition: ecs.TaskDefinition
# Domain-joined gMSA container from a SSM parameter
task_definition.add_container("gmsa-domain-joined-container",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
cpu=128,
memory_limit_mi_b=256,
credential_specs=[ecs.DomainJoinedCredentialSpec.from_ssm_parameter(parameter)]
)
A domianless gMSA container looks like:
# Make sure the task definition's execution role has permissions to read from the S3 bucket or SSM parameter where the CredSpec file is stored.
# bucket: s3.Bucket
# task_definition: ecs.TaskDefinition
# Domainless gMSA container from a S3 bucket object.
task_definition.add_container("gmsa-domainless-container",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
cpu=128,
memory_limit_mi_b=256,
credential_specs=[ecs.DomainlessCredentialSpec.from_s3_bucket(bucket, "credSpec")]
)
Using Graviton2 with Fargate
AWS Graviton2 supports AWS Fargate. For more details, please see this blog post
# Create a Task Definition for running container on Graviton Runtime.
task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
runtime_platform=ecs.RuntimePlatform(
operating_system_family=ecs.OperatingSystemFamily.LINUX,
cpu_architecture=ecs.CpuArchitecture.ARM64
),
cpu=1024,
memory_limit_mi_b=2048
)
task_definition.add_container("webarm64",
logging=ecs.LogDriver.aws_logs(stream_prefix="graviton2-on-fargate"),
port_mappings=[ecs.PortMapping(container_port=80)],
image=ecs.ContainerImage.from_registry("public.ecr.aws/nginx/nginx:latest-arm64v8")
)
Service
A Service
instantiates a TaskDefinition
on a Cluster
a given number of
times, optionally associating them with a load balancer.
If a task fails,
Amazon ECS automatically restarts the task.
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
service = ecs.FargateService(self, "Service",
cluster=cluster,
task_definition=task_definition,
desired_count=5
)
ECS Anywhere service definition looks like:
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
service = ecs.ExternalService(self, "Service",
cluster=cluster,
task_definition=task_definition,
desired_count=5
)
Services
by default will create a security group if not provided.
If you’d like to specify which security groups to use you can override the securityGroups
property.
By default, the service will use the revision of the passed task definition generated when the TaskDefinition
is deployed by CloudFormation. However, this may not be desired if the revision is externally managed,
for example through CodeDeploy.
To set a specific revision number or the special latest
revision, use the taskDefinitionRevision
parameter:
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
ecs.ExternalService(self, "Service",
cluster=cluster,
task_definition=task_definition,
desired_count=5,
task_definition_revision=ecs.TaskDefinitionRevision.of(1)
)
ecs.ExternalService(self, "Service",
cluster=cluster,
task_definition=task_definition,
desired_count=5,
task_definition_revision=ecs.TaskDefinitionRevision.LATEST
)
Deployment circuit breaker and rollback
Amazon ECS deployment circuit breaker automatically rolls back unhealthy service deployments, eliminating the need for manual intervention.
Use circuitBreaker
to enable the deployment circuit breaker which determines whether a service deployment
will fail if the service can’t reach a steady state.
You can optionally enable rollback
for automatic rollback.
See Using the deployment circuit breaker for more details.
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
service = ecs.FargateService(self, "Service",
cluster=cluster,
task_definition=task_definition,
circuit_breaker=ecs.DeploymentCircuitBreaker(
enable=True,
rollback=True
)
)
Note: ECS Anywhere doesn’t support deployment circuit breakers and rollback.
Deployment alarms
Amazon ECS [deployment alarms] (https://aws.amazon.com/blogs/containers/automate-rollbacks-for-amazon-ecs-rolling-deployments-with-cloudwatch-alarms/) allow monitoring and automatically reacting to changes during a rolling update by using Amazon CloudWatch metric alarms.
Amazon ECS starts monitoring the configured deployment alarms as soon as one or more tasks of the updated service are in a running state. The deployment process continues until the primary deployment is healthy and has reached the desired count and the active deployment has been scaled down to 0. Then, the deployment remains in the IN_PROGRESS state for an additional “bake time.” The length the bake time is calculated based on the evaluation periods and period of the alarms. After the bake time, if none of the alarms have been activated, then Amazon ECS considers this to be a successful update and deletes the active deployment and changes the status of the primary deployment to COMPLETED.
import aws_cdk.aws_cloudwatch as cw
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
# elb_alarm: cw.Alarm
service = ecs.FargateService(self, "Service",
cluster=cluster,
task_definition=task_definition,
deployment_alarms=ecs.DeploymentAlarmConfig(
alarm_names=[elb_alarm.alarm_name],
behavior=ecs.AlarmBehavior.ROLLBACK_ON_ALARM
)
)
# Defining a deployment alarm after the service has been created
cpu_alarm_name = "MyCpuMetricAlarm"
cw.Alarm(self, "CPUAlarm",
alarm_name=cpu_alarm_name,
metric=service.metric_cpu_utilization(),
evaluation_periods=2,
threshold=80
)
service.enable_deployment_alarms([cpu_alarm_name],
behavior=ecs.AlarmBehavior.FAIL_ON_ALARM
)
Note: Deployment alarms are only available when
deploymentController
is set toDeploymentControllerType.ECS
, which is the default.
Troubleshooting circular dependencies
I saw this info message during synth time. What do I do?
Deployment alarm ({"Ref":"MyAlarmABC1234"}) enabled on MyEcsService may cause a
circular dependency error when this stack deploys. The alarm name references the
alarm's logical id, or another resource. See the 'Deployment alarms' section in
the module README for more details.
If your app deploys successfully with this message, you can disregard it. But it indicates that you could encounter a circular dependency error when you try to deploy. If you want to alarm on metrics produced by the service, there will be a circular dependency between the service and its deployment alarms. In this case, there are two options to avoid the circular dependency.
Define the physical name for the alarm. Use a defined physical name that is unique within the deployment environment for the alarm name when creating the alarm, and re-use the defined name. This name could be a hardcoded string, a string generated based on the environment, or could reference another resource that does not depend on the service.
Define the physical name for the service. Then, don’t use
metricCpuUtilization()
or similar methods. Create the metric object separately by referencing the service metrics using this name.
Option 1, defining a physical name for the alarm:
import aws_cdk.aws_cloudwatch as cw
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
service = ecs.FargateService(self, "Service",
cluster=cluster,
task_definition=task_definition
)
cpu_alarm_name = "MyCpuMetricAlarm"
my_alarm = cw.Alarm(self, "CPUAlarm",
alarm_name=cpu_alarm_name,
metric=service.metric_cpu_utilization(),
evaluation_periods=2,
threshold=80
)
# Using `myAlarm.alarmName` here will cause a circular dependency
service.enable_deployment_alarms([cpu_alarm_name],
behavior=ecs.AlarmBehavior.FAIL_ON_ALARM
)
Option 2, defining a physical name for the service:
import aws_cdk.aws_cloudwatch as cw
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
service_name = "MyFargateService"
service = ecs.FargateService(self, "Service",
service_name=service_name,
cluster=cluster,
task_definition=task_definition
)
cpu_metric = cw.Metric(
metric_name="CPUUtilization",
namespace="AWS/ECS",
period=Duration.minutes(5),
statistic="Average",
dimensions_map={
"ClusterName": cluster.cluster_name,
# Using `service.serviceName` here will cause a circular dependency
"ServiceName": service_name
}
)
my_alarm = cw.Alarm(self, "CPUAlarm",
alarm_name="cpuAlarmName",
metric=cpu_metric,
evaluation_periods=2,
threshold=80
)
service.enable_deployment_alarms([my_alarm.alarm_name],
behavior=ecs.AlarmBehavior.FAIL_ON_ALARM
)
This issue only applies if the metrics to alarm on are emitted by the service itself. If the metrics are emitted by a different resource, that does not depend on the service, there will be no restrictions on the alarm name.
Include an application/network load balancer
Services
are load balancing targets and can be added to a target group, which will be attached to an application/network load balancers:
# vpc: ec2.Vpc
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
service = ecs.FargateService(self, "Service", cluster=cluster, task_definition=task_definition)
lb = elbv2.ApplicationLoadBalancer(self, "LB", vpc=vpc, internet_facing=True)
listener = lb.add_listener("Listener", port=80)
target_group1 = listener.add_targets("ECS1",
port=80,
targets=[service]
)
target_group2 = listener.add_targets("ECS2",
port=80,
targets=[service.load_balancer_target(
container_name="MyContainer",
container_port=8080
)]
)
Note: ECS Anywhere doesn’t support application/network load balancers.
Note that in the example above, the default service
only allows you to register the first essential container or the first mapped port on the container as a target and add it to a new target group. To have more control over which container and port to register as targets, you can use service.loadBalancerTarget()
to return a load balancing target for a specific container and port.
Alternatively, you can also create all load balancer targets to be registered in this service, add them to target groups, and attach target groups to listeners accordingly.
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
# vpc: ec2.Vpc
service = ecs.FargateService(self, "Service", cluster=cluster, task_definition=task_definition)
lb = elbv2.ApplicationLoadBalancer(self, "LB", vpc=vpc, internet_facing=True)
listener = lb.add_listener("Listener", port=80)
service.register_load_balancer_targets(
container_name="web",
container_port=80,
new_target_group_id="ECS",
listener=ecs.ListenerConfig.application_listener(listener,
protocol=elbv2.ApplicationProtocol.HTTPS
)
)
Using a Load Balancer from a different Stack
If you want to put your Load Balancer and the Service it is load balancing to in
different stacks, you may not be able to use the convenience methods
loadBalancer.addListener()
and listener.addTargets()
.
The reason is that these methods will create resources in the same Stack as the
object they’re called on, which may lead to cyclic references between stacks.
Instead, you will have to create an ApplicationListener
in the service stack,
or an empty TargetGroup
in the load balancer stack that you attach your
service to.
See the ecs/cross-stack-load-balancer example for the alternatives.
Include a classic load balancer
Services
can also be directly attached to a classic load balancer as targets:
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
# vpc: ec2.Vpc
service = ecs.Ec2Service(self, "Service", cluster=cluster, task_definition=task_definition)
lb = elb.LoadBalancer(self, "LB", vpc=vpc)
lb.add_listener(external_port=80)
lb.add_target(service)
Similarly, if you want to have more control over load balancer targeting:
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
# vpc: ec2.Vpc
service = ecs.Ec2Service(self, "Service", cluster=cluster, task_definition=task_definition)
lb = elb.LoadBalancer(self, "LB", vpc=vpc)
lb.add_listener(external_port=80)
lb.add_target(service.load_balancer_target(
container_name="MyContainer",
container_port=80
))
There are two higher-level constructs available which include a load balancer for you that can be found in the aws-ecs-patterns module:
LoadBalancedFargateService
LoadBalancedEc2Service
Import existing services
Ec2Service
and FargateService
provide methods to import existing EC2/Fargate services.
The ARN of the existing service has to be specified to import the service.
Since AWS has changed the ARN format for ECS,
feature flag @aws-cdk/aws-ecs:arnFormatIncludesClusterName
must be enabled to use the new ARN format.
The feature flag changes behavior for the entire CDK project. Therefore it is not possible to mix the old and the new format in one CDK project.
declare const cluster: ecs.Cluster;
// Import service from EC2 service attributes
const service = ecs.Ec2Service.fromEc2ServiceAttributes(this, 'EcsService', {
serviceArn: 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service',
cluster,
});
// Import service from EC2 service ARN
const service = ecs.Ec2Service.fromEc2ServiceArn(this, 'EcsService', 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service');
// Import service from Fargate service attributes
const service = ecs.FargateService.fromFargateServiceAttributes(this, 'EcsService', {
serviceArn: 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service',
cluster,
});
// Import service from Fargate service ARN
const service = ecs.FargateService.fromFargateServiceArn(this, 'EcsService', 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service');
Task Auto-Scaling
You can configure the task count of a service to match demand. Task auto-scaling is
configured by calling autoScaleTaskCount()
:
# target: elbv2.ApplicationTargetGroup
# service: ecs.BaseService
scaling = service.auto_scale_task_count(max_capacity=10)
scaling.scale_on_cpu_utilization("CpuScaling",
target_utilization_percent=50
)
scaling.scale_on_request_count("RequestScaling",
requests_per_target=10000,
target_group=target
)
Task auto-scaling is powered by Application Auto-Scaling. See that section for details.
Integration with CloudWatch Events
To start an Amazon ECS task on an Amazon EC2-backed Cluster, instantiate an
aws-cdk-lib/aws-events-targets.EcsTask
instead of an Ec2Service
:
# cluster: ecs.Cluster
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_asset(path.resolve(__dirname, "..", "eventhandler-image")),
memory_limit_mi_b=256,
logging=ecs.AwsLogDriver(stream_prefix="EventDemo", mode=ecs.AwsLogDriverMode.NON_BLOCKING)
)
# An Rule that describes the event trigger (in this case a scheduled run)
rule = events.Rule(self, "Rule",
schedule=events.Schedule.expression("rate(1 min)")
)
# Pass an environment variable to the container 'TheContainer' in the task
rule.add_target(targets.EcsTask(
cluster=cluster,
task_definition=task_definition,
task_count=1,
container_overrides=[targets.ContainerOverride(
container_name="TheContainer",
environment=[targets.TaskEnvironmentVariable(
name="I_WAS_TRIGGERED",
value="From CloudWatch Events"
)]
)]
))
Log Drivers
Currently Supported Log Drivers:
awslogs
fluentd
gelf
journald
json-file
splunk
syslog
awsfirelens
Generic
awslogs Log Driver
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.aws_logs(
stream_prefix="EventDemo",
mode=ecs.AwsLogDriverMode.NON_BLOCKING,
max_buffer_size=Size.mebibytes(25)
)
)
fluentd Log Driver
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.fluentd()
)
gelf Log Driver
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.gelf(address="my-gelf-address")
)
journald Log Driver
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.journald()
)
json-file Log Driver
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.json_file()
)
splunk Log Driver
# secret: ecs.Secret
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.splunk(
secret_token=secret,
url="my-splunk-url"
)
)
syslog Log Driver
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.syslog()
)
firelens Log Driver
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.firelens(
options={
"Name": "firehose",
"region": "us-west-2",
"delivery_stream": "my-stream"
}
)
)
To pass secrets to the log configuration, use the secretOptions
property of the log configuration. The task execution role is automatically granted read permissions on the secrets/parameters.
# secret: secretsmanager.Secret
# parameter: ssm.StringParameter
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.firelens(
options={},
secret_options={ # Retrieved from AWS Secrets Manager or AWS Systems Manager Parameter Store
"apikey": ecs.Secret.from_secrets_manager(secret),
"host": ecs.Secret.from_ssm_parameter(parameter)}
)
)
When forwarding logs to CloudWatch Logs using Fluent Bit, you can set the retention period for the newly created Log Group by specifying the log_retention_days
parameter.
If a Fluent Bit container has not been added, CDK will automatically add it to the task definition, and the necessary IAM permissions will be added to the task role.
If you are adding the Fluent Bit container manually, ensure to add the logs:PutRetentionPolicy
policy to the task role.
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.LogDrivers.firelens(
options={
"Name": "cloudwatch",
"region": "us-west-2",
"log_group_name": "firelens-fluent-bit",
"log_stream_prefix": "from-fluent-bit",
"auto_create_group": "true",
"log_retention_days": "1"
}
)
)
Visit Fluent Bit CloudWatch Configuration Parameters for more details.
Generic Log Driver
A generic log driver object exists to provide a lower level abstraction of the log driver configuration.
# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
memory_limit_mi_b=256,
logging=ecs.GenericLogDriver(
log_driver="fluentd",
options={
"tag": "example-tag"
}
)
)
CloudMap Service Discovery
To register your ECS service with a CloudMap Service Registry, you may add the
cloudMapOptions
property to your service:
# task_definition: ecs.TaskDefinition
# cluster: ecs.Cluster
service = ecs.Ec2Service(self, "Service",
cluster=cluster,
task_definition=task_definition,
cloud_map_options=ecs.CloudMapOptions(
# Create A records - useful for AWSVPC network mode.
dns_record_type=cloudmap.DnsRecordType.A
)
)
With bridge
or host
network modes, only SRV
DNS record types are supported.
By default, SRV
DNS record types will target the default container and default
port. However, you may target a different container and port on the same ECS task:
# task_definition: ecs.TaskDefinition
# cluster: ecs.Cluster
# Add a container to the task definition
specific_container = task_definition.add_container("Container",
image=ecs.ContainerImage.from_registry("/aws/aws-example-app"),
memory_limit_mi_b=2048
)
# Add a port mapping
specific_container.add_port_mappings(
container_port=7600,
protocol=ecs.Protocol.TCP
)
ecs.Ec2Service(self, "Service",
cluster=cluster,
task_definition=task_definition,
cloud_map_options=ecs.CloudMapOptions(
# Create SRV records - useful for bridge networking
dns_record_type=cloudmap.DnsRecordType.SRV,
# Targets port TCP port 7600 `specificContainer`
container=specific_container,
container_port=7600
)
)
Associate With a Specific CloudMap Service
You may associate an ECS service with a specific CloudMap service. To do
this, use the service’s associateCloudMapService
method:
# cloud_map_service: cloudmap.Service
# ecs_service: ecs.FargateService
ecs_service.associate_cloud_map_service(
service=cloud_map_service
)
Capacity Providers
There are two major families of Capacity Providers: AWS Fargate (including Fargate Spot) and EC2 Auto Scaling Group Capacity Providers. Both are supported.
Fargate Capacity Providers
To enable Fargate capacity providers, you can either set
enableFargateCapacityProviders
to true
when creating your cluster, or by
invoking the enableFargateCapacityProviders()
method after creating your
cluster. This will add both FARGATE
and FARGATE_SPOT
as available capacity
providers on your cluster.
# vpc: ec2.Vpc
cluster = ecs.Cluster(self, "FargateCPCluster",
vpc=vpc,
enable_fargate_capacity_providers=True
)
task_definition = ecs.FargateTaskDefinition(self, "TaskDef")
task_definition.add_container("web",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
)
ecs.FargateService(self, "FargateService",
cluster=cluster,
task_definition=task_definition,
capacity_provider_strategies=[ecs.CapacityProviderStrategy(
capacity_provider="FARGATE_SPOT",
weight=2
), ecs.CapacityProviderStrategy(
capacity_provider="FARGATE",
weight=1
)
]
)
Auto Scaling Group Capacity Providers
To add an Auto Scaling Group Capacity Provider, first create an EC2 Auto Scaling
Group. Then, create an AsgCapacityProvider
and pass the Auto Scaling Group to
it in the constructor. Then add the Capacity Provider to the cluster. Finally,
you can refer to the Provider by its name in your service’s or task’s Capacity
Provider strategy.
By default, Auto Scaling Group Capacity Providers will manage the scale-in and
scale-out behavior of the auto scaling group based on the load your tasks put on
the cluster, this is called Managed Scaling. If you’d
rather manage scaling behavior yourself set enableManagedScaling
to false
.
Additionally Managed Termination Protection is enabled by default to
prevent scale-in behavior from terminating instances that have non-daemon tasks
running on them. This is ideal for tasks that can be run to completion. If your
tasks are safe to interrupt then this protection can be disabled by setting
enableManagedTerminationProtection
to false
. Managed Scaling must be enabled for
Managed Termination Protection to work.
Currently there is a known CloudFormation issue that prevents CloudFormation from automatically deleting Auto Scaling Groups that have Managed Termination Protection enabled. To work around this issue you could set
enableManagedTerminationProtection
tofalse
on the Auto Scaling Group Capacity Provider. If you’d rather not disable Managed Termination Protection, you can manually delete the Auto Scaling Group. For other workarounds, see this GitHub issue.
Managed instance draining facilitates graceful termination of Amazon ECS instances. This allows your service workloads to stop safely and be rescheduled to non-terminating instances. Infrastructure maintenance and updates are preformed without disruptions to workloads. To use managed instance draining, set enableManagedDraining to true.
# vpc: ec2.Vpc
cluster = ecs.Cluster(self, "Cluster",
vpc=vpc
)
auto_scaling_group = autoscaling.AutoScalingGroup(self, "ASG",
vpc=vpc,
instance_type=ec2.InstanceType("t2.micro"),
machine_image=ecs.EcsOptimizedImage.amazon_linux2(),
min_capacity=0,
max_capacity=100
)
capacity_provider = ecs.AsgCapacityProvider(self, "AsgCapacityProvider",
auto_scaling_group=auto_scaling_group,
instance_warmup_period=300
)
cluster.add_asg_capacity_provider(capacity_provider)
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("web",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
memory_reservation_mi_b=256
)
ecs.Ec2Service(self, "EC2Service",
cluster=cluster,
task_definition=task_definition,
capacity_provider_strategies=[ecs.CapacityProviderStrategy(
capacity_provider=capacity_provider.capacity_provider_name,
weight=1
)
]
)
Cluster Default Provider Strategy
A capacity provider strategy determines whether ECS tasks are launched on EC2 instances or Fargate/Fargate Spot. It can be specified at the cluster, service, or task level, and consists of one or more capacity providers. You can specify an optional base and weight value for finer control of how tasks are launched. The base
specifies a minimum number of tasks on one capacity provider, and the weight
s of each capacity provider determine how tasks are distributed after base
is satisfied.
You can associate a default capacity provider strategy with an Amazon ECS cluster. After you do this, a default capacity provider strategy is used when creating a service or running a standalone task in the cluster and whenever a custom capacity provider strategy or a launch type isn’t specified. We recommend that you define a default capacity provider strategy for each cluster.
For more information visit https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html
When the service does not have a capacity provider strategy, the cluster’s default capacity provider strategy will be used. Default Capacity Provider Strategy can be added by using the method addDefaultCapacityProviderStrategy
. A capacity provider strategy cannot contain a mix of EC2 Autoscaling Group capacity providers and Fargate providers.
# capacity_provider: ecs.AsgCapacityProvider
cluster = ecs.Cluster(self, "EcsCluster",
enable_fargate_capacity_providers=True
)
cluster.add_asg_capacity_provider(capacity_provider)
cluster.add_default_capacity_provider_strategy([capacity_provider="FARGATE", base=10, weight=50, capacity_provider="FARGATE_SPOT", weight=50
])
# capacity_provider: ecs.AsgCapacityProvider
cluster = ecs.Cluster(self, "EcsCluster",
enable_fargate_capacity_providers=True
)
cluster.add_asg_capacity_provider(capacity_provider)
cluster.add_default_capacity_provider_strategy([capacity_provider=capacity_provider.capacity_provider_name
])
Elastic Inference Accelerators
Currently, this feature is only supported for services with EC2 launch types.
To add elastic inference accelerators to your EC2 instance, first add
inferenceAccelerators
field to the Ec2TaskDefinition and set the deviceName
and deviceType
properties.
inference_accelerators = [{
"device_name": "device1",
"device_type": "eia2.medium"
}]
task_definition = ecs.Ec2TaskDefinition(self, "Ec2TaskDef",
inference_accelerators=inference_accelerators
)
To enable using the inference accelerators in the containers, add inferenceAcceleratorResources
field and set it to a list of device names used for the inference accelerators. Each value in the
list should match a DeviceName
for an InferenceAccelerator
specified in the task definition.
# task_definition: ecs.TaskDefinition
inference_accelerator_resources = ["device1"]
task_definition.add_container("cont",
image=ecs.ContainerImage.from_registry("test"),
memory_limit_mi_b=1024,
inference_accelerator_resources=inference_accelerator_resources
)
ECS Exec command
Please note, ECS Exec leverages AWS Systems Manager (SSM). So as a prerequisite for the exec command to work, you need to have the SSM plugin for the AWS CLI installed locally. For more information, see Install Session Manager plugin for AWS CLI.
To enable the ECS Exec feature for your containers, set the boolean flag enableExecuteCommand
to true
in
your Ec2Service
, FargateService
or ExternalService
.
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
service = ecs.Ec2Service(self, "Service",
cluster=cluster,
task_definition=task_definition,
enable_execute_command=True
)
Enabling logging
You can enable sending logs of your execute session commands to a CloudWatch log group or S3 bucket by configuring
the executeCommandConfiguration
property for your cluster. The default configuration will send the
logs to the CloudWatch Logs using the awslogs
log driver that is configured in your task definition. Please note,
when using your own logConfiguration
the log group or S3 Bucket specified must already be created.
To encrypt data using your own KMS Customer Key (CMK), you must create a CMK and provide the key in the kmsKey
field
of the executeCommandConfiguration
. To use this key for encrypting CloudWatch log data or S3 bucket, make sure to associate the key
to these resources on creation.
# vpc: ec2.Vpc
kms_key = kms.Key(self, "KmsKey")
# Pass the KMS key in the `encryptionKey` field to associate the key to the log group
log_group = logs.LogGroup(self, "LogGroup",
encryption_key=kms_key
)
# Pass the KMS key in the `encryptionKey` field to associate the key to the S3 bucket
exec_bucket = s3.Bucket(self, "EcsExecBucket",
encryption_key=kms_key
)
cluster = ecs.Cluster(self, "Cluster",
vpc=vpc,
execute_command_configuration=ecs.ExecuteCommandConfiguration(
kms_key=kms_key,
log_configuration=ecs.ExecuteCommandLogConfiguration(
cloud_watch_log_group=log_group,
cloud_watch_encryption_enabled=True,
s3_bucket=exec_bucket,
s3_encryption_enabled=True,
s3_key_prefix="exec-command-output"
),
logging=ecs.ExecuteCommandLogging.OVERRIDE
)
)
Amazon ECS Service Connect
Service Connect is a managed AWS mesh network offering. It simplifies DNS queries and inter-service communication for ECS Services by allowing customers to set up simple DNS aliases for their services, which are accessible to all services that have enabled Service Connect.
To enable Service Connect, you must have created a CloudMap namespace. The CDK can infer your cluster’s default CloudMap namespace, or you can specify a custom namespace. You must also have created a named port mapping on at least one container in your Task Definition.
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
# container_options: ecs.ContainerDefinitionOptions
container = task_definition.add_container("MyContainer", container_options)
container.add_port_mappings(
name="api",
container_port=8080
)
cluster.add_default_cloud_map_namespace(
name="local"
)
service = ecs.FargateService(self, "Service",
cluster=cluster,
task_definition=task_definition,
service_connect_configuration=ecs.ServiceConnectProps(
services=[ecs.ServiceConnectService(
port_mapping_name="api",
dns_name="http-api",
port=80
)
]
)
)
Service Connect-enabled services may now reach this service at http-api:80
. Traffic to this endpoint will
be routed to the container’s port 8080.
To opt a service into using service connect without advertising a port, simply call the ‘enableServiceConnect’ method on an initialized service.
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
service = ecs.FargateService(self, "Service",
cluster=cluster,
task_definition=task_definition
)
service.enable_service_connect()
Service Connect also allows custom logging, Service Discovery name, and configuration of the port where service connect traffic is received.
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
custom_service = ecs.FargateService(self, "CustomizedService",
cluster=cluster,
task_definition=task_definition,
service_connect_configuration=ecs.ServiceConnectProps(
log_driver=ecs.LogDrivers.aws_logs(
stream_prefix="sc-traffic"
),
services=[ecs.ServiceConnectService(
port_mapping_name="api",
dns_name="customized-api",
port=80,
ingress_port_override=20040,
discovery_name="custom"
)
]
)
)
To set a timeout for service connect, use idleTimeout
and perRequestTimeout
.
Note: If idleTimeout
is set to a time that is less than perRequestTimeout
, the connection will close when
the idleTimeout
is reached and not the perRequestTimeout
.
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
service = ecs.FargateService(self, "Service",
cluster=cluster,
task_definition=task_definition,
service_connect_configuration=ecs.ServiceConnectProps(
services=[ecs.ServiceConnectService(
port_mapping_name="api",
idle_timeout=Duration.minutes(5),
per_request_timeout=Duration.minutes(5)
)
]
)
)
Visit Amazon ECS support for configurable timeout for services running with Service Connect for more details.
ServiceManagedVolume
Amazon ECS now supports the attachment of Amazon Elastic Block Store (EBS) volumes to ECS tasks,
allowing you to utilize persistent, high-performance block storage with your ECS services.
This feature supports various use cases, such as using EBS volumes as extended ephemeral storage or
loading data from EBS snapshots.
You can also specify encrypted: true
so that ECS will manage the KMS key. If you want to use your own KMS key, you may do so by providing both encrypted: true
and kmsKeyId
.
You can only attach a single volume for each task in the ECS Service.
To add an empty EBS Volume to an ECS Service, call service.addVolume().
# cluster: ecs.Cluster
task_definition = ecs.FargateTaskDefinition(self, "TaskDef")
container = task_definition.add_container("web",
image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
port_mappings=[ecs.PortMapping(
container_port=80,
protocol=ecs.Protocol.TCP
)]
)
volume = ecs.ServiceManagedVolume(self, "EBSVolume",
name="ebs1",
managed_eBSVolume=ecs.ServiceManagedEBSVolumeConfiguration(
size=Size.gibibytes(15),
volume_type=ec2.EbsDeviceVolumeType.GP3,
file_system_type=ecs.FileSystemType.XFS,
tag_specifications=[ecs.EBSTagSpecification(
tags={
"purpose": "production"
},
propagate_tags=ecs.EbsPropagatedTagSource.SERVICE
)]
)
)
volume.mount_in(container,
container_path="/var/lib",
read_only=False
)
task_definition.add_volume(volume)
service = ecs.FargateService(self, "FargateService",
cluster=cluster,
task_definition=task_definition
)
service.add_volume(volume)
To create an EBS volume from an existing snapshot by specifying the snapShotId
while adding a volume to the service.
# container: ecs.ContainerDefinition
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
volume_from_snapshot = ecs.ServiceManagedVolume(self, "EBSVolume",
name="nginx-vol",
managed_eBSVolume=ecs.ServiceManagedEBSVolumeConfiguration(
snap_shot_id="snap-066877671789bd71b",
volume_type=ec2.EbsDeviceVolumeType.GP3,
file_system_type=ecs.FileSystemType.XFS
)
)
volume_from_snapshot.mount_in(container,
container_path="/var/lib",
read_only=False
)
task_definition.add_volume(volume_from_snapshot)
service = ecs.FargateService(self, "FargateService",
cluster=cluster,
task_definition=task_definition
)
service.add_volume(volume_from_snapshot)
Enable pseudo-terminal (TTY) allocation
You can allocate a pseudo-terminal (TTY) for a container passing pseudoTerminal
option while adding the container
to the task definition.
This maps to Tty option in the “Create a container section”
of the Docker Remote API and the –tty option to docker run
.
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
pseudo_terminal=True
)
Specify a container ulimit
You can specify a container ulimits
by specifying them in the ulimits
option while adding the container
to the task definition.
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
image=ecs.ContainerImage.from_registry("example-image"),
ulimits=[ecs.Ulimit(
hard_limit=128,
name=ecs.UlimitName.RSS,
soft_limit=128
)]
)