Amazon ECS Construct Library

This package contains constructs for working with Amazon Elastic Container Service (Amazon ECS).

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service.

For further information on Amazon ECS, see the Amazon ECS documentation

The following example creates an Amazon ECS cluster, adds capacity to it, and runs a service on it:

# vpc: ec2.Vpc


# Create an ECS cluster
cluster = ecs.Cluster(self, "Cluster", vpc=vpc)

# Add capacity to it
cluster.add_capacity("DefaultAutoScalingGroupCapacity",
    instance_type=ec2.InstanceType("t2.xlarge"),
    desired_capacity=3
)

task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")

task_definition.add_container("DefaultContainer",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    memory_limit_mi_b=512
)

# Instantiate an Amazon ECS Service
ecs_service = ecs.Ec2Service(self, "Service",
    cluster=cluster,
    task_definition=task_definition
)

For a set of constructs defining common ECS architectural patterns, see the aws-cdk-lib/aws-ecs-patterns package.

Launch Types: AWS Fargate vs Amazon EC2 vs AWS ECS Anywhere

There are three sets of constructs in this library:

  • Use the Ec2TaskDefinition and Ec2Service constructs to run tasks on Amazon EC2 instances running in your account.

  • Use the FargateTaskDefinition and FargateService constructs to run tasks on instances that are managed for you by AWS.

  • Use the ExternalTaskDefinition and ExternalService constructs to run AWS ECS Anywhere tasks on self-managed infrastructure.

Here are the main differences:

  • Amazon EC2: instances are under your control. Complete control of task to host allocation. Required to specify at least a memory reservation or limit for every container. Can use Host, Bridge and AwsVpc networking modes. Can attach Classic Load Balancer. Can share volumes between container and host.

  • AWS Fargate: tasks run on AWS-managed instances, AWS manages task to host allocation for you. Requires specification of memory and cpu sizes at the taskdefinition level. Only supports AwsVpc networking modes and Application/Network Load Balancers. Only the AWS log driver is supported. Many host features are not supported such as adding kernel capabilities and mounting host devices/volumes inside the container.

  • AWS ECS Anywhere: tasks are run and managed by AWS ECS Anywhere on infrastructure owned by the customer. Bridge, Host and None networking modes are supported. Does not support autoscaling, load balancing, cloudmap or attachment of volumes.

For more information on Amazon EC2 vs AWS Fargate, networking and ECS Anywhere see the AWS Documentation: AWS Fargate, Task Networking, ECS Anywhere

Clusters

A Cluster defines the infrastructure to run your tasks on. You can run many tasks on a single cluster.

The following code creates a cluster that can run AWS Fargate tasks:

# vpc: ec2.Vpc


cluster = ecs.Cluster(self, "Cluster",
    vpc=vpc
)

To encrypt the fargate ephemeral storage configure a KMS key.

# key: kms.Key


cluster = ecs.Cluster(self, "Cluster",
    managed_storage_configuration=ecs.ManagedStorageConfiguration(
        fargate_ephemeral_storage_kms_key=key
    )
)

The following code imports an existing cluster using the ARN which can be used to import an Amazon ECS service either EC2 or Fargate.

cluster_arn = "arn:aws:ecs:us-east-1:012345678910:cluster/clusterName"

cluster = ecs.Cluster.from_cluster_arn(self, "Cluster", cluster_arn)

To use tasks with Amazon EC2 launch-type, you have to add capacity to the cluster in order for tasks to be scheduled on your instances. Typically, you add an AutoScalingGroup with instances running the latest Amazon ECS-optimized AMI to the cluster. There is a method to build and add such an AutoScalingGroup automatically, or you can supply a customized AutoScalingGroup that you construct yourself. It’s possible to add multiple AutoScalingGroups with various instance types.

The following example creates an Amazon ECS cluster and adds capacity to it:

# vpc: ec2.Vpc


cluster = ecs.Cluster(self, "Cluster",
    vpc=vpc
)

# Either add default capacity
cluster.add_capacity("DefaultAutoScalingGroupCapacity",
    instance_type=ec2.InstanceType("t2.xlarge"),
    desired_capacity=3
)

# Or add customized capacity. Be sure to start the Amazon ECS-optimized AMI.
auto_scaling_group = autoscaling.AutoScalingGroup(self, "ASG",
    vpc=vpc,
    instance_type=ec2.InstanceType("t2.xlarge"),
    machine_image=ecs.EcsOptimizedImage.amazon_linux(),
    # Or use Amazon ECS-Optimized Amazon Linux 2 AMI
    # machineImage: EcsOptimizedImage.amazonLinux2(),
    desired_capacity=3
)

capacity_provider = ecs.AsgCapacityProvider(self, "AsgCapacityProvider",
    auto_scaling_group=auto_scaling_group
)
cluster.add_asg_capacity_provider(capacity_provider)

If you omit the property vpc, the construct will create a new VPC with two AZs.

By default, all machine images will auto-update to the latest version on each deployment, causing a replacement of the instances in your AutoScalingGroup if the AMI has been updated since the last deployment.

If task draining is enabled, ECS will transparently reschedule tasks on to the new instances before terminating your old instances. If you have disabled task draining, the tasks will be terminated along with the instance. To prevent that, you can pick a non-updating AMI by passing cacheInContext: true, but be sure to periodically update to the latest AMI manually by using the CDK CLI context management commands:

# vpc: ec2.Vpc

auto_scaling_group = autoscaling.AutoScalingGroup(self, "ASG",
    machine_image=ecs.EcsOptimizedImage.amazon_linux(cached_in_context=True),
    vpc=vpc,
    instance_type=ec2.InstanceType("t2.micro")
)

To use LaunchTemplate with AsgCapacityProvider, make sure to specify the userData in the LaunchTemplate:

# vpc: ec2.Vpc

launch_template = ec2.LaunchTemplate(self, "ASG-LaunchTemplate",
    instance_type=ec2.InstanceType("t3.medium"),
    machine_image=ecs.EcsOptimizedImage.amazon_linux2(),
    user_data=ec2.UserData.for_linux()
)

auto_scaling_group = autoscaling.AutoScalingGroup(self, "ASG",
    vpc=vpc,
    mixed_instances_policy=autoscaling.MixedInstancesPolicy(
        instances_distribution=autoscaling.InstancesDistribution(
            on_demand_percentage_above_base_capacity=50
        ),
        launch_template=launch_template
    )
)

cluster = ecs.Cluster(self, "Cluster", vpc=vpc)

capacity_provider = ecs.AsgCapacityProvider(self, "AsgCapacityProvider",
    auto_scaling_group=auto_scaling_group,
    machine_image_type=ecs.MachineImageType.AMAZON_LINUX_2
)

cluster.add_asg_capacity_provider(capacity_provider)

The following code retrieve the Amazon Resource Names (ARNs) of tasks that are a part of a specified ECS cluster. It’s useful when you want to grant permissions to a task to access other AWS resources.

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition

task_aRNs = cluster.arn_for_tasks("*") # arn:aws:ecs:<region>:<regionId>:task/<clusterName>/*

# Grant the task permission to access other AWS resources
task_definition.add_to_task_role_policy(
    iam.PolicyStatement(
        actions=["ecs:UpdateTaskProtection"],
        resources=[task_aRNs]
    ))

To manage task protection settings in an ECS cluster, you can use the grantTaskProtection method. This method grants the ecs:UpdateTaskProtection permission to a specified IAM entity.

# Assume 'cluster' is an instance of ecs.Cluster
# cluster: ecs.Cluster
# task_role: iam.Role


# Grant ECS Task Protection permissions to the role
# Now 'taskRole' has the 'ecs:UpdateTaskProtection' permission on all tasks in the cluster
cluster.grant_task_protection(task_role)

Bottlerocket

Bottlerocket is a Linux-based open source operating system that is purpose-built by AWS for running containers. You can launch Amazon ECS container instances with the Bottlerocket AMI.

The following example will create a capacity with self-managed Amazon EC2 capacity of 2 c5.large Linux instances running with Bottlerocket AMI.

The following example adds Bottlerocket capacity to the cluster:

# cluster: ecs.Cluster


cluster.add_capacity("bottlerocket-asg",
    min_capacity=2,
    instance_type=ec2.InstanceType("c5.large"),
    machine_image=ecs.BottleRocketImage()
)

You can also specify an NVIDIA-compatible AMI such as in this example:

# cluster: ecs.Cluster


cluster.add_capacity("bottlerocket-asg",
    instance_type=ec2.InstanceType("p3.2xlarge"),
    machine_image=ecs.BottleRocketImage(
        variant=ecs.BottlerocketEcsVariant.AWS_ECS_2_NVIDIA
    )
)

ARM64 (Graviton) Instances

To launch instances with ARM64 hardware, you can use the Amazon ECS-optimized Amazon Linux 2 (arm64) AMI. Based on Amazon Linux 2, this AMI is recommended for use when launching your EC2 instances that are powered by Arm-based AWS Graviton Processors.

# cluster: ecs.Cluster


cluster.add_capacity("graviton-cluster",
    min_capacity=2,
    instance_type=ec2.InstanceType("c6g.large"),
    machine_image=ecs.EcsOptimizedImage.amazon_linux2(ecs.AmiHardwareType.ARM)
)

Bottlerocket is also supported:

# cluster: ecs.Cluster


cluster.add_capacity("graviton-cluster",
    min_capacity=2,
    instance_type=ec2.InstanceType("c6g.large"),
    machine_image_type=ecs.MachineImageType.BOTTLEROCKET
)

Amazon Linux 2 (Neuron) Instances

To launch Amazon EC2 Inf1, Trn1 or Inf2 instances, you can use the Amazon ECS optimized Amazon Linux 2 (Neuron) AMI. It comes pre-configured with AWS Inferentia and AWS Trainium drivers and the AWS Neuron runtime for Docker which makes running machine learning inference workloads easier on Amazon ECS.

# cluster: ecs.Cluster


cluster.add_capacity("neuron-cluster",
    min_capacity=2,
    instance_type=ec2.InstanceType("inf1.xlarge"),
    machine_image=ecs.EcsOptimizedImage.amazon_linux2(ecs.AmiHardwareType.NEURON)
)

Spot Instances

To add spot instances into the cluster, you must specify the spotPrice in the ecs.AddCapacityOptions and optionally enable the spotInstanceDraining property.

# cluster: ecs.Cluster


# Add an AutoScalingGroup with spot instances to the existing cluster
cluster.add_capacity("AsgSpot",
    max_capacity=2,
    min_capacity=2,
    desired_capacity=2,
    instance_type=ec2.InstanceType("c5.xlarge"),
    spot_price="0.0735",
    # Enable the Automated Spot Draining support for Amazon ECS
    spot_instance_draining=True
)

SNS Topic Encryption

When the ecs.AddCapacityOptions that you provide has a non-zero taskDrainTime (the default) then an SNS topic and Lambda are created to ensure that the cluster’s instances have been properly drained of tasks before terminating. The SNS Topic is sent the instance-terminating lifecycle event from the AutoScalingGroup, and the Lambda acts on that event. If you wish to engage server-side encryption for this SNS Topic then you may do so by providing a KMS key for the topicEncryptionKey property of ecs.AddCapacityOptions.

# Given
# cluster: ecs.Cluster
# key: kms.Key

# Then, use that key to encrypt the lifecycle-event SNS Topic.
cluster.add_capacity("ASGEncryptedSNS",
    instance_type=ec2.InstanceType("t2.xlarge"),
    desired_capacity=3,
    topic_encryption_key=key
)

Task definitions

A task definition describes what a single copy of a task should look like. A task definition has one or more containers; typically, it has one main container (the default container is the first one that’s added to the task definition, and it is marked essential) and optionally some supporting containers which are used to support the main container, doings things like upload logs or metrics to monitoring services.

To run a task or service with Amazon EC2 launch type, use the Ec2TaskDefinition. For AWS Fargate tasks/services, use the FargateTaskDefinition. For AWS ECS Anywhere use the ExternalTaskDefinition. These classes provide simplified APIs that only contain properties relevant for each specific launch type.

For a FargateTaskDefinition, specify the task size (memoryLimitMiB and cpu):

fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
    memory_limit_mi_b=512,
    cpu=256
)

On Fargate Platform Version 1.4.0 or later, you may specify up to 200GiB of ephemeral storage:

fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
    memory_limit_mi_b=512,
    cpu=256,
    ephemeral_storage_gi_b=100
)

To specify the process namespace to use for the containers in the task, use the pidMode property:

fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
    runtime_platform=ecs.RuntimePlatform(
        operating_system_family=ecs.OperatingSystemFamily.LINUX,
        cpu_architecture=ecs.CpuArchitecture.ARM64
    ),
    memory_limit_mi_b=512,
    cpu=256,
    pid_mode=ecs.PidMode.TASK
)

Note: pidMode is only supported for tasks that are hosted on AWS Fargate if the tasks are using platform version 1.4.0 or later (Linux). Only the task option is supported for Linux containers. pidMode isn’t supported for Windows containers on Fargate. If pidMode is specified for a Fargate task, then runtimePlatform.operatingSystemFamily must also be specified.

To add containers to a task definition, call addContainer():

fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
    memory_limit_mi_b=512,
    cpu=256
)
container = fargate_task_definition.add_container("WebContainer",
    # Use an image from DockerHub
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
)

For an Ec2TaskDefinition:

ec2_task_definition = ecs.Ec2TaskDefinition(self, "TaskDef",
    network_mode=ecs.NetworkMode.BRIDGE
)

container = ec2_task_definition.add_container("WebContainer",
    # Use an image from DockerHub
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    memory_limit_mi_b=1024
)

For an ExternalTaskDefinition:

external_task_definition = ecs.ExternalTaskDefinition(self, "TaskDef")

container = external_task_definition.add_container("WebContainer",
    # Use an image from DockerHub
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    memory_limit_mi_b=1024
)

You can specify container properties when you add them to the task definition, or with various methods, e.g.:

To add a port mapping when adding a container to the task definition, specify the portMappings option:

# task_definition: ecs.TaskDefinition


task_definition.add_container("WebContainer",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    memory_limit_mi_b=1024,
    port_mappings=[ecs.PortMapping(container_port=3000)]
)

To add port mappings directly to a container definition, call addPortMappings():

# container: ecs.ContainerDefinition


container.add_port_mappings(
    container_port=3000
)

Sometimes it is useful to be able to configure port ranges for a container, e.g. to run applications such as game servers and real-time streaming which typically require multiple ports to be opened simultaneously. This feature is supported on both Linux and Windows operating systems for both the EC2 and AWS Fargate launch types. There is a maximum limit of 100 port ranges per container, and you cannot specify overlapping port ranges.

Docker recommends that you turn off the docker-proxy in the Docker daemon config file when you have a large number of ports. For more information, see Issue #11185 on the GitHub website.

# container: ecs.ContainerDefinition


container.add_port_mappings(
    container_port=ecs.ContainerDefinition.CONTAINER_PORT_USE_RANGE,
    container_port_range="8080-8081"
)

To add data volumes to a task definition, call addVolume():

fargate_task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
    memory_limit_mi_b=512,
    cpu=256
)
volume = {
    # Use an Elastic FileSystem
    "name": "mydatavolume",
    "efs_volume_configuration": {
        "file_system_id": "EFS"
    }
}

container = fargate_task_definition.add_volume(volume)

Note: ECS Anywhere doesn’t support volume attachments in the task definition.

To use a TaskDefinition that can be used with either Amazon EC2 or AWS Fargate launch types, use the TaskDefinition construct.

When creating a task definition you have to specify what kind of tasks you intend to run: Amazon EC2, AWS Fargate, or both. The following example uses both:

task_definition = ecs.TaskDefinition(self, "TaskDef",
    memory_mi_b="512",
    cpu="256",
    network_mode=ecs.NetworkMode.AWS_VPC,
    compatibility=ecs.Compatibility.EC2_AND_FARGATE
)

To grant a principal permission to run your TaskDefinition, you can use the TaskDefinition.grantRun() method:

# role: iam.IGrantable

task_def = ecs.TaskDefinition(self, "TaskDef",
    cpu="512",
    memory_mi_b="512",
    compatibility=ecs.Compatibility.EC2_AND_FARGATE
)

# Gives role required permissions to run taskDef
task_def.grant_run(role)

To deploy containerized applications that require the allocation of standard input (stdin) or a terminal (tty), use the interactive property.

This parameter corresponds to OpenStdin in the Create a container section of the Docker Remote API and the --interactive option to docker run.

# task_definition: ecs.TaskDefinition


task_definition.add_container("Container",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    interactive=True
)

Images

Images supply the software that runs inside the container. Images can be obtained from either DockerHub or from ECR repositories, built directly from a local Dockerfile, or use an existing tarball.

  • ecs.ContainerImage.fromRegistry(imageName): use a public image.

  • ecs.ContainerImage.fromRegistry(imageName, { credentials: mySecret }): use a private image that requires credentials.

  • ecs.ContainerImage.fromEcrRepository(repo, tagOrDigest): use the given ECR repository as the image to start. If no tag or digest is provided, “latest” is assumed.

  • ecs.ContainerImage.fromAsset('./image'): build and upload an image directly from a Dockerfile in your source directory.

  • ecs.ContainerImage.fromDockerImageAsset(asset): uses an existing aws-cdk-lib/aws-ecr-assets.DockerImageAsset as a container image.

  • ecs.ContainerImage.fromTarball(file): use an existing tarball.

  • new ecs.TagParameterContainerImage(repository): use the given ECR repository as the image but a CloudFormation parameter as the tag.

Environment variables

To pass environment variables to the container, you can use the environment, environmentFiles, and secrets props.

# secret: secretsmanager.Secret
# db_secret: secretsmanager.Secret
# parameter: ssm.StringParameter
# task_definition: ecs.TaskDefinition
# s3_bucket: s3.Bucket


new_container = task_definition.add_container("container",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    memory_limit_mi_b=1024,
    environment={ # clear text, not for sensitive data
        "STAGE": "prod"},
    environment_files=[ # list of environment files hosted either on local disk or S3
        ecs.EnvironmentFile.from_asset("./demo-env-file.env"),
        ecs.EnvironmentFile.from_bucket(s3_bucket, "assets/demo-env-file.env")],
    secrets={ # Retrieved from AWS Secrets Manager or AWS Systems Manager Parameter Store at container start-up.
        "SECRET": ecs.Secret.from_secrets_manager(secret),
        "DB_PASSWORD": ecs.Secret.from_secrets_manager(db_secret, "password"),  # Reference a specific JSON field, (requires platform version 1.4.0 or later for Fargate tasks)
        "API_KEY": ecs.Secret.from_secrets_manager_version(secret, ecs.SecretVersionInfo(version_id="12345"), "apiKey"),  # Reference a specific version of the secret by its version id or version stage (requires platform version 1.4.0 or later for Fargate tasks)
        "PARAMETER": ecs.Secret.from_ssm_parameter(parameter)}
)
new_container.add_environment("QUEUE_NAME", "MyQueue")
new_container.add_secret("API_KEY", ecs.Secret.from_secrets_manager(secret))
new_container.add_secret("DB_PASSWORD", ecs.Secret.from_secrets_manager(secret, "password"))

The task execution role is automatically granted read permissions on the secrets/parameters. Further details provided in the AWS documentation about specifying environment variables.

Linux parameters

To apply additional linux-specific options related to init process and memory management to the container, use the linuxParameters property:

# task_definition: ecs.TaskDefinition


task_definition.add_container("container",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    memory_limit_mi_b=1024,
    linux_parameters=ecs.LinuxParameters(self, "LinuxParameters",
        init_process_enabled=True,
        shared_memory_size=1024,
        max_swap=Size.mebibytes(5000),
        swappiness=90
    )
)

System controls

To set system controls (kernel parameters) on the container, use the systemControls prop:

# task_definition: ecs.TaskDefinition


task_definition.add_container("container",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    memory_limit_mi_b=1024,
    system_controls=[ecs.SystemControl(
        namespace="net.ipv6.conf.all.default.disable_ipv6",
        value="1"
    )
    ]
)

Restart policy

To enable a restart policy for the container, set enableRestartPolicy to true and also specify restartIgnoredExitCodes and restartAttemptPeriod if necessary.

# task_definition: ecs.TaskDefinition


task_definition.add_container("container",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    enable_restart_policy=True,
    restart_ignored_exit_codes=[0, 127],
    restart_attempt_period=Duration.seconds(360)
)

Docker labels

You can add labels to the container with the dockerLabels property or with the addDockerLabel method:

# task_definition: ecs.TaskDefinition


container = task_definition.add_container("cont",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    memory_limit_mi_b=1024,
    docker_labels={
        "foo": "bar"
    }
)

container.add_docker_label("label", "value")

Using Windows containers on Fargate

AWS Fargate supports Amazon ECS Windows containers. For more details, please see this blog post

# Create a Task Definition for the Windows container to start
task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
    runtime_platform=ecs.RuntimePlatform(
        operating_system_family=ecs.OperatingSystemFamily.WINDOWS_SERVER_2019_CORE,
        cpu_architecture=ecs.CpuArchitecture.X86_64
    ),
    cpu=1024,
    memory_limit_mi_b=2048
)

task_definition.add_container("windowsservercore",
    logging=ecs.LogDriver.aws_logs(stream_prefix="win-iis-on-fargate"),
    port_mappings=[ecs.PortMapping(container_port=80)],
    image=ecs.ContainerImage.from_registry("mcr.microsoft.com/windows/servercore/iis:windowsservercore-ltsc2019")
)

Using Windows authentication with gMSA

Amazon ECS supports Active Directory authentication for Linux containers through a special kind of service account called a group Managed Service Account (gMSA). For more details, please see the product documentation on how to implement on Windows containers, or this blog post on how to implement on Linux containers.

There are two types of CredentialSpecs, domained-join or domainless. Both types support creation from a S3 bucket, a SSM parameter, or by directly specifying a location for the file in the constructor.

A domian-joined gMSA container looks like:

# Make sure the task definition's execution role has permissions to read from the S3 bucket or SSM parameter where the CredSpec file is stored.
# parameter: ssm.IParameter
# task_definition: ecs.TaskDefinition


# Domain-joined gMSA container from a SSM parameter
task_definition.add_container("gmsa-domain-joined-container",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    cpu=128,
    memory_limit_mi_b=256,
    credential_specs=[ecs.DomainJoinedCredentialSpec.from_ssm_parameter(parameter)]
)

A domianless gMSA container looks like:

# Make sure the task definition's execution role has permissions to read from the S3 bucket or SSM parameter where the CredSpec file is stored.
# bucket: s3.Bucket
# task_definition: ecs.TaskDefinition


# Domainless gMSA container from a S3 bucket object.
task_definition.add_container("gmsa-domainless-container",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    cpu=128,
    memory_limit_mi_b=256,
    credential_specs=[ecs.DomainlessCredentialSpec.from_s3_bucket(bucket, "credSpec")]
)

Using Graviton2 with Fargate

AWS Graviton2 supports AWS Fargate. For more details, please see this blog post

# Create a Task Definition for running container on Graviton Runtime.
task_definition = ecs.FargateTaskDefinition(self, "TaskDef",
    runtime_platform=ecs.RuntimePlatform(
        operating_system_family=ecs.OperatingSystemFamily.LINUX,
        cpu_architecture=ecs.CpuArchitecture.ARM64
    ),
    cpu=1024,
    memory_limit_mi_b=2048
)

task_definition.add_container("webarm64",
    logging=ecs.LogDriver.aws_logs(stream_prefix="graviton2-on-fargate"),
    port_mappings=[ecs.PortMapping(container_port=80)],
    image=ecs.ContainerImage.from_registry("public.ecr.aws/nginx/nginx:latest-arm64v8")
)

Service

A Service instantiates a TaskDefinition on a Cluster a given number of times, optionally associating them with a load balancer. If a task fails, Amazon ECS automatically restarts the task.

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition


service = ecs.FargateService(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    desired_count=5
)

ECS Anywhere service definition looks like:

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition


service = ecs.ExternalService(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    desired_count=5
)

Services by default will create a security group if not provided. If you’d like to specify which security groups to use you can override the securityGroups property.

By default, the service will use the revision of the passed task definition generated when the TaskDefinition is deployed by CloudFormation. However, this may not be desired if the revision is externally managed, for example through CodeDeploy.

To set a specific revision number or the special latest revision, use the taskDefinitionRevision parameter:

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition


ecs.ExternalService(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    desired_count=5,
    task_definition_revision=ecs.TaskDefinitionRevision.of(1)
)

ecs.ExternalService(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    desired_count=5,
    task_definition_revision=ecs.TaskDefinitionRevision.LATEST
)

Deployment circuit breaker and rollback

Amazon ECS deployment circuit breaker automatically rolls back unhealthy service deployments, eliminating the need for manual intervention.

Use circuitBreaker to enable the deployment circuit breaker which determines whether a service deployment will fail if the service can’t reach a steady state. You can optionally enable rollback for automatic rollback.

See Using the deployment circuit breaker for more details.

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition

service = ecs.FargateService(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    circuit_breaker=ecs.DeploymentCircuitBreaker(
        enable=True,
        rollback=True
    )
)

Note: ECS Anywhere doesn’t support deployment circuit breakers and rollback.

Deployment alarms

Amazon ECS [deployment alarms] (https://aws.amazon.com/blogs/containers/automate-rollbacks-for-amazon-ecs-rolling-deployments-with-cloudwatch-alarms/) allow monitoring and automatically reacting to changes during a rolling update by using Amazon CloudWatch metric alarms.

Amazon ECS starts monitoring the configured deployment alarms as soon as one or more tasks of the updated service are in a running state. The deployment process continues until the primary deployment is healthy and has reached the desired count and the active deployment has been scaled down to 0. Then, the deployment remains in the IN_PROGRESS state for an additional “bake time.” The length the bake time is calculated based on the evaluation periods and period of the alarms. After the bake time, if none of the alarms have been activated, then Amazon ECS considers this to be a successful update and deletes the active deployment and changes the status of the primary deployment to COMPLETED.

import aws_cdk.aws_cloudwatch as cw

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
# elb_alarm: cw.Alarm


service = ecs.FargateService(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    deployment_alarms=ecs.DeploymentAlarmConfig(
        alarm_names=[elb_alarm.alarm_name],
        behavior=ecs.AlarmBehavior.ROLLBACK_ON_ALARM
    )
)

# Defining a deployment alarm after the service has been created
cpu_alarm_name = "MyCpuMetricAlarm"
cw.Alarm(self, "CPUAlarm",
    alarm_name=cpu_alarm_name,
    metric=service.metric_cpu_utilization(),
    evaluation_periods=2,
    threshold=80
)
service.enable_deployment_alarms([cpu_alarm_name],
    behavior=ecs.AlarmBehavior.FAIL_ON_ALARM
)

Note: Deployment alarms are only available when deploymentController is set to DeploymentControllerType.ECS, which is the default.

Troubleshooting circular dependencies

I saw this info message during synth time. What do I do?

Deployment alarm ({"Ref":"MyAlarmABC1234"}) enabled on MyEcsService may cause a
circular dependency error when this stack deploys. The alarm name references the
alarm's logical id, or another resource. See the 'Deployment alarms' section in
the module README for more details.

If your app deploys successfully with this message, you can disregard it. But it indicates that you could encounter a circular dependency error when you try to deploy. If you want to alarm on metrics produced by the service, there will be a circular dependency between the service and its deployment alarms. In this case, there are two options to avoid the circular dependency.

  1. Define the physical name for the alarm. Use a defined physical name that is unique within the deployment environment for the alarm name when creating the alarm, and re-use the defined name. This name could be a hardcoded string, a string generated based on the environment, or could reference another resource that does not depend on the service.

  2. Define the physical name for the service. Then, don’t use metricCpuUtilization() or similar methods. Create the metric object separately by referencing the service metrics using this name.

Option 1, defining a physical name for the alarm:

import aws_cdk.aws_cloudwatch as cw

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition


service = ecs.FargateService(self, "Service",
    cluster=cluster,
    task_definition=task_definition
)

cpu_alarm_name = "MyCpuMetricAlarm"
my_alarm = cw.Alarm(self, "CPUAlarm",
    alarm_name=cpu_alarm_name,
    metric=service.metric_cpu_utilization(),
    evaluation_periods=2,
    threshold=80
)

# Using `myAlarm.alarmName` here will cause a circular dependency
service.enable_deployment_alarms([cpu_alarm_name],
    behavior=ecs.AlarmBehavior.FAIL_ON_ALARM
)

Option 2, defining a physical name for the service:

import aws_cdk.aws_cloudwatch as cw

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition

service_name = "MyFargateService"
service = ecs.FargateService(self, "Service",
    service_name=service_name,
    cluster=cluster,
    task_definition=task_definition
)

cpu_metric = cw.Metric(
    metric_name="CPUUtilization",
    namespace="AWS/ECS",
    period=Duration.minutes(5),
    statistic="Average",
    dimensions_map={
        "ClusterName": cluster.cluster_name,
        # Using `service.serviceName` here will cause a circular dependency
        "ServiceName": service_name
    }
)
my_alarm = cw.Alarm(self, "CPUAlarm",
    alarm_name="cpuAlarmName",
    metric=cpu_metric,
    evaluation_periods=2,
    threshold=80
)

service.enable_deployment_alarms([my_alarm.alarm_name],
    behavior=ecs.AlarmBehavior.FAIL_ON_ALARM
)

This issue only applies if the metrics to alarm on are emitted by the service itself. If the metrics are emitted by a different resource, that does not depend on the service, there will be no restrictions on the alarm name.

Include an application/network load balancer

Services are load balancing targets and can be added to a target group, which will be attached to an application/network load balancers:

# vpc: ec2.Vpc
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition

service = ecs.FargateService(self, "Service", cluster=cluster, task_definition=task_definition)

lb = elbv2.ApplicationLoadBalancer(self, "LB", vpc=vpc, internet_facing=True)
listener = lb.add_listener("Listener", port=80)
target_group1 = listener.add_targets("ECS1",
    port=80,
    targets=[service]
)
target_group2 = listener.add_targets("ECS2",
    port=80,
    targets=[service.load_balancer_target(
        container_name="MyContainer",
        container_port=8080
    )]
)

Note: ECS Anywhere doesn’t support application/network load balancers.

Note that in the example above, the default service only allows you to register the first essential container or the first mapped port on the container as a target and add it to a new target group. To have more control over which container and port to register as targets, you can use service.loadBalancerTarget() to return a load balancing target for a specific container and port.

Alternatively, you can also create all load balancer targets to be registered in this service, add them to target groups, and attach target groups to listeners accordingly.

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
# vpc: ec2.Vpc

service = ecs.FargateService(self, "Service", cluster=cluster, task_definition=task_definition)

lb = elbv2.ApplicationLoadBalancer(self, "LB", vpc=vpc, internet_facing=True)
listener = lb.add_listener("Listener", port=80)
service.register_load_balancer_targets(
    container_name="web",
    container_port=80,
    new_target_group_id="ECS",
    listener=ecs.ListenerConfig.application_listener(listener,
        protocol=elbv2.ApplicationProtocol.HTTPS
    )
)

Using a Load Balancer from a different Stack

If you want to put your Load Balancer and the Service it is load balancing to in different stacks, you may not be able to use the convenience methods loadBalancer.addListener() and listener.addTargets().

The reason is that these methods will create resources in the same Stack as the object they’re called on, which may lead to cyclic references between stacks. Instead, you will have to create an ApplicationListener in the service stack, or an empty TargetGroup in the load balancer stack that you attach your service to.

See the ecs/cross-stack-load-balancer example for the alternatives.

Include a classic load balancer

Services can also be directly attached to a classic load balancer as targets:

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
# vpc: ec2.Vpc

service = ecs.Ec2Service(self, "Service", cluster=cluster, task_definition=task_definition)

lb = elb.LoadBalancer(self, "LB", vpc=vpc)
lb.add_listener(external_port=80)
lb.add_target(service)

Similarly, if you want to have more control over load balancer targeting:

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
# vpc: ec2.Vpc

service = ecs.Ec2Service(self, "Service", cluster=cluster, task_definition=task_definition)

lb = elb.LoadBalancer(self, "LB", vpc=vpc)
lb.add_listener(external_port=80)
lb.add_target(service.load_balancer_target(
    container_name="MyContainer",
    container_port=80
))

There are two higher-level constructs available which include a load balancer for you that can be found in the aws-ecs-patterns module:

  • LoadBalancedFargateService

  • LoadBalancedEc2Service

Import existing services

Ec2Service and FargateService provide methods to import existing EC2/Fargate services. The ARN of the existing service has to be specified to import the service.

Since AWS has changed the ARN format for ECS, feature flag @aws-cdk/aws-ecs:arnFormatIncludesClusterName must be enabled to use the new ARN format. The feature flag changes behavior for the entire CDK project. Therefore it is not possible to mix the old and the new format in one CDK project.

declare const cluster: ecs.Cluster;

// Import service from EC2 service attributes
const service = ecs.Ec2Service.fromEc2ServiceAttributes(this, 'EcsService', {
  serviceArn: 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service',
  cluster,
});

// Import service from EC2 service ARN
const service = ecs.Ec2Service.fromEc2ServiceArn(this, 'EcsService', 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service');

// Import service from Fargate service attributes
const service = ecs.FargateService.fromFargateServiceAttributes(this, 'EcsService', {
  serviceArn: 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service',
  cluster,
});

// Import service from Fargate service ARN
const service = ecs.FargateService.fromFargateServiceArn(this, 'EcsService', 'arn:aws:ecs:us-west-2:123456789012:service/my-http-service');

Task Auto-Scaling

You can configure the task count of a service to match demand. Task auto-scaling is configured by calling autoScaleTaskCount():

# target: elbv2.ApplicationTargetGroup
# service: ecs.BaseService

scaling = service.auto_scale_task_count(max_capacity=10)
scaling.scale_on_cpu_utilization("CpuScaling",
    target_utilization_percent=50
)

scaling.scale_on_request_count("RequestScaling",
    requests_per_target=10000,
    target_group=target
)

Task auto-scaling is powered by Application Auto-Scaling. See that section for details.

Integration with CloudWatch Events

To start an Amazon ECS task on an Amazon EC2-backed Cluster, instantiate an aws-cdk-lib/aws-events-targets.EcsTask instead of an Ec2Service:

# cluster: ecs.Cluster

# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_asset(path.resolve(__dirname, "..", "eventhandler-image")),
    memory_limit_mi_b=256,
    logging=ecs.AwsLogDriver(stream_prefix="EventDemo", mode=ecs.AwsLogDriverMode.NON_BLOCKING)
)

# An Rule that describes the event trigger (in this case a scheduled run)
rule = events.Rule(self, "Rule",
    schedule=events.Schedule.expression("rate(1 min)")
)

# Pass an environment variable to the container 'TheContainer' in the task
rule.add_target(targets.EcsTask(
    cluster=cluster,
    task_definition=task_definition,
    task_count=1,
    container_overrides=[targets.ContainerOverride(
        container_name="TheContainer",
        environment=[targets.TaskEnvironmentVariable(
            name="I_WAS_TRIGGERED",
            value="From CloudWatch Events"
        )]
    )]
))

Log Drivers

Currently Supported Log Drivers:

  • awslogs

  • fluentd

  • gelf

  • journald

  • json-file

  • splunk

  • syslog

  • awsfirelens

  • Generic

awslogs Log Driver

# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.LogDrivers.aws_logs(
        stream_prefix="EventDemo",
        mode=ecs.AwsLogDriverMode.NON_BLOCKING,
        max_buffer_size=Size.mebibytes(25)
    )
)

fluentd Log Driver

# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.LogDrivers.fluentd()
)

gelf Log Driver

# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.LogDrivers.gelf(address="my-gelf-address")
)

journald Log Driver

# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.LogDrivers.journald()
)

json-file Log Driver

# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.LogDrivers.json_file()
)

splunk Log Driver

# secret: ecs.Secret


# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.LogDrivers.splunk(
        secret_token=secret,
        url="my-splunk-url"
    )
)

syslog Log Driver

# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.LogDrivers.syslog()
)

firelens Log Driver

# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.LogDrivers.firelens(
        options={
            "Name": "firehose",
            "region": "us-west-2",
            "delivery_stream": "my-stream"
        }
    )
)

To pass secrets to the log configuration, use the secretOptions property of the log configuration. The task execution role is automatically granted read permissions on the secrets/parameters.

# secret: secretsmanager.Secret
# parameter: ssm.StringParameter


task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.LogDrivers.firelens(
        options={},
        secret_options={ # Retrieved from AWS Secrets Manager or AWS Systems Manager Parameter Store
            "apikey": ecs.Secret.from_secrets_manager(secret),
            "host": ecs.Secret.from_ssm_parameter(parameter)}
    )
)

When forwarding logs to CloudWatch Logs using Fluent Bit, you can set the retention period for the newly created Log Group by specifying the log_retention_days parameter. If a Fluent Bit container has not been added, CDK will automatically add it to the task definition, and the necessary IAM permissions will be added to the task role. If you are adding the Fluent Bit container manually, ensure to add the logs:PutRetentionPolicy policy to the task role.

task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.LogDrivers.firelens(
        options={
            "Name": "cloudwatch",
            "region": "us-west-2",
            "log_group_name": "firelens-fluent-bit",
            "log_stream_prefix": "from-fluent-bit",
            "auto_create_group": "true",
            "log_retention_days": "1"
        }
    )
)

Generic Log Driver

A generic log driver object exists to provide a lower level abstraction of the log driver configuration.

# Create a Task Definition for the container to start
task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    memory_limit_mi_b=256,
    logging=ecs.GenericLogDriver(
        log_driver="fluentd",
        options={
            "tag": "example-tag"
        }
    )
)

CloudMap Service Discovery

To register your ECS service with a CloudMap Service Registry, you may add the cloudMapOptions property to your service:

# task_definition: ecs.TaskDefinition
# cluster: ecs.Cluster


service = ecs.Ec2Service(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    cloud_map_options=ecs.CloudMapOptions(
        # Create A records - useful for AWSVPC network mode.
        dns_record_type=cloudmap.DnsRecordType.A
    )
)

With bridge or host network modes, only SRV DNS record types are supported. By default, SRV DNS record types will target the default container and default port. However, you may target a different container and port on the same ECS task:

# task_definition: ecs.TaskDefinition
# cluster: ecs.Cluster


# Add a container to the task definition
specific_container = task_definition.add_container("Container",
    image=ecs.ContainerImage.from_registry("/aws/aws-example-app"),
    memory_limit_mi_b=2048
)

# Add a port mapping
specific_container.add_port_mappings(
    container_port=7600,
    protocol=ecs.Protocol.TCP
)

ecs.Ec2Service(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    cloud_map_options=ecs.CloudMapOptions(
        # Create SRV records - useful for bridge networking
        dns_record_type=cloudmap.DnsRecordType.SRV,
        # Targets port TCP port 7600 `specificContainer`
        container=specific_container,
        container_port=7600
    )
)

Associate With a Specific CloudMap Service

You may associate an ECS service with a specific CloudMap service. To do this, use the service’s associateCloudMapService method:

# cloud_map_service: cloudmap.Service
# ecs_service: ecs.FargateService


ecs_service.associate_cloud_map_service(
    service=cloud_map_service
)

Capacity Providers

There are two major families of Capacity Providers: AWS Fargate (including Fargate Spot) and EC2 Auto Scaling Group Capacity Providers. Both are supported.

Fargate Capacity Providers

To enable Fargate capacity providers, you can either set enableFargateCapacityProviders to true when creating your cluster, or by invoking the enableFargateCapacityProviders() method after creating your cluster. This will add both FARGATE and FARGATE_SPOT as available capacity providers on your cluster.

# vpc: ec2.Vpc


cluster = ecs.Cluster(self, "FargateCPCluster",
    vpc=vpc,
    enable_fargate_capacity_providers=True
)

task_definition = ecs.FargateTaskDefinition(self, "TaskDef")

task_definition.add_container("web",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample")
)

ecs.FargateService(self, "FargateService",
    cluster=cluster,
    task_definition=task_definition,
    capacity_provider_strategies=[ecs.CapacityProviderStrategy(
        capacity_provider="FARGATE_SPOT",
        weight=2
    ), ecs.CapacityProviderStrategy(
        capacity_provider="FARGATE",
        weight=1
    )
    ]
)

Auto Scaling Group Capacity Providers

To add an Auto Scaling Group Capacity Provider, first create an EC2 Auto Scaling Group. Then, create an AsgCapacityProvider and pass the Auto Scaling Group to it in the constructor. Then add the Capacity Provider to the cluster. Finally, you can refer to the Provider by its name in your service’s or task’s Capacity Provider strategy.

By default, Auto Scaling Group Capacity Providers will manage the scale-in and scale-out behavior of the auto scaling group based on the load your tasks put on the cluster, this is called Managed Scaling. If you’d rather manage scaling behavior yourself set enableManagedScaling to false.

Additionally Managed Termination Protection is enabled by default to prevent scale-in behavior from terminating instances that have non-daemon tasks running on them. This is ideal for tasks that can be run to completion. If your tasks are safe to interrupt then this protection can be disabled by setting enableManagedTerminationProtection to false. Managed Scaling must be enabled for Managed Termination Protection to work.

Currently there is a known CloudFormation issue that prevents CloudFormation from automatically deleting Auto Scaling Groups that have Managed Termination Protection enabled. To work around this issue you could set enableManagedTerminationProtection to false on the Auto Scaling Group Capacity Provider. If you’d rather not disable Managed Termination Protection, you can manually delete the Auto Scaling Group. For other workarounds, see this GitHub issue.

Managed instance draining facilitates graceful termination of Amazon ECS instances. This allows your service workloads to stop safely and be rescheduled to non-terminating instances. Infrastructure maintenance and updates are preformed without disruptions to workloads. To use managed instance draining, set enableManagedDraining to true.

# vpc: ec2.Vpc


cluster = ecs.Cluster(self, "Cluster",
    vpc=vpc
)

auto_scaling_group = autoscaling.AutoScalingGroup(self, "ASG",
    vpc=vpc,
    instance_type=ec2.InstanceType("t2.micro"),
    machine_image=ecs.EcsOptimizedImage.amazon_linux2(),
    min_capacity=0,
    max_capacity=100
)

capacity_provider = ecs.AsgCapacityProvider(self, "AsgCapacityProvider",
    auto_scaling_group=auto_scaling_group,
    instance_warmup_period=300
)
cluster.add_asg_capacity_provider(capacity_provider)

task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")

task_definition.add_container("web",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    memory_reservation_mi_b=256
)

ecs.Ec2Service(self, "EC2Service",
    cluster=cluster,
    task_definition=task_definition,
    capacity_provider_strategies=[ecs.CapacityProviderStrategy(
        capacity_provider=capacity_provider.capacity_provider_name,
        weight=1
    )
    ]
)

Cluster Default Provider Strategy

A capacity provider strategy determines whether ECS tasks are launched on EC2 instances or Fargate/Fargate Spot. It can be specified at the cluster, service, or task level, and consists of one or more capacity providers. You can specify an optional base and weight value for finer control of how tasks are launched. The base specifies a minimum number of tasks on one capacity provider, and the weights of each capacity provider determine how tasks are distributed after base is satisfied.

You can associate a default capacity provider strategy with an Amazon ECS cluster. After you do this, a default capacity provider strategy is used when creating a service or running a standalone task in the cluster and whenever a custom capacity provider strategy or a launch type isn’t specified. We recommend that you define a default capacity provider strategy for each cluster.

For more information visit https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-capacity-providers.html

When the service does not have a capacity provider strategy, the cluster’s default capacity provider strategy will be used. Default Capacity Provider Strategy can be added by using the method addDefaultCapacityProviderStrategy. A capacity provider strategy cannot contain a mix of EC2 Autoscaling Group capacity providers and Fargate providers.

# capacity_provider: ecs.AsgCapacityProvider


cluster = ecs.Cluster(self, "EcsCluster",
    enable_fargate_capacity_providers=True
)
cluster.add_asg_capacity_provider(capacity_provider)

cluster.add_default_capacity_provider_strategy([capacity_provider="FARGATE", base=10, weight=50, capacity_provider="FARGATE_SPOT", weight=50
])
# capacity_provider: ecs.AsgCapacityProvider


cluster = ecs.Cluster(self, "EcsCluster",
    enable_fargate_capacity_providers=True
)
cluster.add_asg_capacity_provider(capacity_provider)

cluster.add_default_capacity_provider_strategy([capacity_provider=capacity_provider.capacity_provider_name
])

Elastic Inference Accelerators

Currently, this feature is only supported for services with EC2 launch types.

To add elastic inference accelerators to your EC2 instance, first add inferenceAccelerators field to the Ec2TaskDefinition and set the deviceName and deviceType properties.

inference_accelerators = [{
    "device_name": "device1",
    "device_type": "eia2.medium"
}]

task_definition = ecs.Ec2TaskDefinition(self, "Ec2TaskDef",
    inference_accelerators=inference_accelerators
)

To enable using the inference accelerators in the containers, add inferenceAcceleratorResources field and set it to a list of device names used for the inference accelerators. Each value in the list should match a DeviceName for an InferenceAccelerator specified in the task definition.

# task_definition: ecs.TaskDefinition

inference_accelerator_resources = ["device1"]

task_definition.add_container("cont",
    image=ecs.ContainerImage.from_registry("test"),
    memory_limit_mi_b=1024,
    inference_accelerator_resources=inference_accelerator_resources
)

ECS Exec command

Please note, ECS Exec leverages AWS Systems Manager (SSM). So as a prerequisite for the exec command to work, you need to have the SSM plugin for the AWS CLI installed locally. For more information, see Install Session Manager plugin for AWS CLI.

To enable the ECS Exec feature for your containers, set the boolean flag enableExecuteCommand to true in your Ec2Service, FargateService or ExternalService.

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition


service = ecs.Ec2Service(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    enable_execute_command=True
)

Enabling logging

You can enable sending logs of your execute session commands to a CloudWatch log group or S3 bucket by configuring the executeCommandConfiguration property for your cluster. The default configuration will send the logs to the CloudWatch Logs using the awslogs log driver that is configured in your task definition. Please note, when using your own logConfiguration the log group or S3 Bucket specified must already be created.

To encrypt data using your own KMS Customer Key (CMK), you must create a CMK and provide the key in the kmsKey field of the executeCommandConfiguration. To use this key for encrypting CloudWatch log data or S3 bucket, make sure to associate the key to these resources on creation.

# vpc: ec2.Vpc

kms_key = kms.Key(self, "KmsKey")

# Pass the KMS key in the `encryptionKey` field to associate the key to the log group
log_group = logs.LogGroup(self, "LogGroup",
    encryption_key=kms_key
)

# Pass the KMS key in the `encryptionKey` field to associate the key to the S3 bucket
exec_bucket = s3.Bucket(self, "EcsExecBucket",
    encryption_key=kms_key
)

cluster = ecs.Cluster(self, "Cluster",
    vpc=vpc,
    execute_command_configuration=ecs.ExecuteCommandConfiguration(
        kms_key=kms_key,
        log_configuration=ecs.ExecuteCommandLogConfiguration(
            cloud_watch_log_group=log_group,
            cloud_watch_encryption_enabled=True,
            s3_bucket=exec_bucket,
            s3_encryption_enabled=True,
            s3_key_prefix="exec-command-output"
        ),
        logging=ecs.ExecuteCommandLogging.OVERRIDE
    )
)

Amazon ECS Service Connect

Service Connect is a managed AWS mesh network offering. It simplifies DNS queries and inter-service communication for ECS Services by allowing customers to set up simple DNS aliases for their services, which are accessible to all services that have enabled Service Connect.

To enable Service Connect, you must have created a CloudMap namespace. The CDK can infer your cluster’s default CloudMap namespace, or you can specify a custom namespace. You must also have created a named port mapping on at least one container in your Task Definition.

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition
# container_options: ecs.ContainerDefinitionOptions


container = task_definition.add_container("MyContainer", container_options)

container.add_port_mappings(
    name="api",
    container_port=8080
)

cluster.add_default_cloud_map_namespace(
    name="local"
)

service = ecs.FargateService(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    service_connect_configuration=ecs.ServiceConnectProps(
        services=[ecs.ServiceConnectService(
            port_mapping_name="api",
            dns_name="http-api",
            port=80
        )
        ]
    )
)

Service Connect-enabled services may now reach this service at http-api:80. Traffic to this endpoint will be routed to the container’s port 8080.

To opt a service into using service connect without advertising a port, simply call the ‘enableServiceConnect’ method on an initialized service.

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition


service = ecs.FargateService(self, "Service",
    cluster=cluster,
    task_definition=task_definition
)
service.enable_service_connect()

Service Connect also allows custom logging, Service Discovery name, and configuration of the port where service connect traffic is received.

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition


custom_service = ecs.FargateService(self, "CustomizedService",
    cluster=cluster,
    task_definition=task_definition,
    service_connect_configuration=ecs.ServiceConnectProps(
        log_driver=ecs.LogDrivers.aws_logs(
            stream_prefix="sc-traffic"
        ),
        services=[ecs.ServiceConnectService(
            port_mapping_name="api",
            dns_name="customized-api",
            port=80,
            ingress_port_override=20040,
            discovery_name="custom"
        )
        ]
    )
)

To set a timeout for service connect, use idleTimeout and perRequestTimeout.

Note: If idleTimeout is set to a time that is less than perRequestTimeout, the connection will close when the idleTimeout is reached and not the perRequestTimeout.

# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition


service = ecs.FargateService(self, "Service",
    cluster=cluster,
    task_definition=task_definition,
    service_connect_configuration=ecs.ServiceConnectProps(
        services=[ecs.ServiceConnectService(
            port_mapping_name="api",
            idle_timeout=Duration.minutes(5),
            per_request_timeout=Duration.minutes(5)
        )
        ]
    )
)

ServiceManagedVolume

Amazon ECS now supports the attachment of Amazon Elastic Block Store (EBS) volumes to ECS tasks, allowing you to utilize persistent, high-performance block storage with your ECS services. This feature supports various use cases, such as using EBS volumes as extended ephemeral storage or loading data from EBS snapshots. You can also specify encrypted: true so that ECS will manage the KMS key. If you want to use your own KMS key, you may do so by providing both encrypted: true and kmsKeyId.

You can only attach a single volume for each task in the ECS Service.

To add an empty EBS Volume to an ECS Service, call service.addVolume().

# cluster: ecs.Cluster

task_definition = ecs.FargateTaskDefinition(self, "TaskDef")

container = task_definition.add_container("web",
    image=ecs.ContainerImage.from_registry("amazon/amazon-ecs-sample"),
    port_mappings=[ecs.PortMapping(
        container_port=80,
        protocol=ecs.Protocol.TCP
    )]
)

volume = ecs.ServiceManagedVolume(self, "EBSVolume",
    name="ebs1",
    managed_eBSVolume=ecs.ServiceManagedEBSVolumeConfiguration(
        size=Size.gibibytes(15),
        volume_type=ec2.EbsDeviceVolumeType.GP3,
        file_system_type=ecs.FileSystemType.XFS,
        tag_specifications=[ecs.EBSTagSpecification(
            tags={
                "purpose": "production"
            },
            propagate_tags=ecs.EbsPropagatedTagSource.SERVICE
        )]
    )
)

volume.mount_in(container,
    container_path="/var/lib",
    read_only=False
)

task_definition.add_volume(volume)

service = ecs.FargateService(self, "FargateService",
    cluster=cluster,
    task_definition=task_definition
)

service.add_volume(volume)

To create an EBS volume from an existing snapshot by specifying the snapShotId while adding a volume to the service.

# container: ecs.ContainerDefinition
# cluster: ecs.Cluster
# task_definition: ecs.TaskDefinition


volume_from_snapshot = ecs.ServiceManagedVolume(self, "EBSVolume",
    name="nginx-vol",
    managed_eBSVolume=ecs.ServiceManagedEBSVolumeConfiguration(
        snap_shot_id="snap-066877671789bd71b",
        volume_type=ec2.EbsDeviceVolumeType.GP3,
        file_system_type=ecs.FileSystemType.XFS
    )
)

volume_from_snapshot.mount_in(container,
    container_path="/var/lib",
    read_only=False
)
task_definition.add_volume(volume_from_snapshot)
service = ecs.FargateService(self, "FargateService",
    cluster=cluster,
    task_definition=task_definition
)

service.add_volume(volume_from_snapshot)

Enable pseudo-terminal (TTY) allocation

You can allocate a pseudo-terminal (TTY) for a container passing pseudoTerminal option while adding the container to the task definition. This maps to Tty option in the “Create a container section” of the Docker Remote API and the –tty option to docker run.

task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    pseudo_terminal=True
)

Specify a container ulimit

You can specify a container ulimits by specifying them in the ulimits option while adding the container to the task definition.

task_definition = ecs.Ec2TaskDefinition(self, "TaskDef")
task_definition.add_container("TheContainer",
    image=ecs.ContainerImage.from_registry("example-image"),
    ulimits=[ecs.Ulimit(
        hard_limit=128,
        name=ecs.UlimitName.RSS,
        soft_limit=128
    )]
)