CfnModelPackageProps

class aws_cdk.aws_sagemaker.CfnModelPackageProps(*, additional_inference_specifications=None, additional_inference_specifications_to_add=None, approval_description=None, certify_for_marketplace=None, client_token=None, customer_metadata_properties=None, domain=None, drift_check_baselines=None, inference_specification=None, last_modified_time=None, metadata_properties=None, model_approval_status=None, model_card=None, model_metrics=None, model_package_description=None, model_package_group_name=None, model_package_name=None, model_package_status_details=None, model_package_version=None, sample_payload_url=None, security_config=None, skip_model_validation=None, source_algorithm_specification=None, source_uri=None, tags=None, task=None, validation_specification=None)

Bases: object

Properties for defining a CfnModelPackage.

Parameters:
  • additional_inference_specifications (Union[IResolvable, Sequence[Union[IResolvable, AdditionalInferenceSpecificationDefinitionProperty, Dict[str, Any]]], None]) – An array of additional Inference Specification objects.

  • additional_inference_specifications_to_add (Union[IResolvable, Sequence[Union[IResolvable, AdditionalInferenceSpecificationDefinitionProperty, Dict[str, Any]]], None]) – An array of additional Inference Specification objects to be added to the existing array. The total number of additional Inference Specification objects cannot exceed 15. Each additional Inference Specification object specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

  • approval_description (Optional[str]) – A description provided when the model approval is set.

  • certify_for_marketplace (Union[bool, IResolvable, None]) – Whether the model package is to be certified to be listed on AWS Marketplace. For information about listing model packages on AWS Marketplace, see List Your Algorithm or Model Package on AWS Marketplace .

  • client_token (Optional[str]) – A unique token that guarantees that the call to this API is idempotent.

  • customer_metadata_properties (Union[IResolvable, Mapping[str, str], None]) – The metadata properties for the model package.

  • domain (Optional[str]) – The machine learning domain of your model package and its components. Common machine learning domains include computer vision and natural language processing.

  • drift_check_baselines (Union[IResolvable, DriftCheckBaselinesProperty, Dict[str, Any], None]) – Represents the drift check baselines that can be used when the model monitor is set using the model package.

  • inference_specification (Union[IResolvable, InferenceSpecificationProperty, Dict[str, Any], None]) – Defines how to perform inference generation after a training job is run.

  • last_modified_time (Optional[str]) – The last time the model package was modified.

  • metadata_properties (Union[IResolvable, MetadataPropertiesProperty, Dict[str, Any], None]) – Metadata properties of the tracking entity, trial, or trial component.

  • model_approval_status (Optional[str]) – The approval status of the model. This can be one of the following values. - APPROVED - The model is approved - REJECTED - The model is rejected. - PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.

  • model_card (Union[IResolvable, ModelCardProperty, Dict[str, Any], None]) – An Amazon SageMaker Model Card.

  • model_metrics (Union[IResolvable, ModelMetricsProperty, Dict[str, Any], None]) – Metrics for the model.

  • model_package_description (Optional[str]) – The description of the model package.

  • model_package_group_name (Optional[str]) – The model group to which the model belongs.

  • model_package_name (Optional[str]) – The name of the model.

  • model_package_status_details (Union[IResolvable, ModelPackageStatusDetailsProperty, Dict[str, Any], None]) – Specifies the validation and image scan statuses of the model package.

  • model_package_version (Union[int, float, None]) – The version number of a versioned model.

  • sample_payload_url (Optional[str]) – The Amazon Simple Storage Service path where the sample payload are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

  • security_config (Union[IResolvable, SecurityConfigProperty, Dict[str, Any], None]) – An optional AWS Key Management Service key to encrypt, decrypt, and re-encrypt model package information for regulated workloads with highly sensitive data.

  • skip_model_validation (Optional[str]) – Indicates if you want to skip model validation.

  • source_algorithm_specification (Union[IResolvable, SourceAlgorithmSpecificationProperty, Dict[str, Any], None]) – A list of algorithms that were used to create a model package.

  • source_uri (Optional[str]) – The URI of the source for the model package.

  • tags (Optional[Sequence[Union[CfnTag, Dict[str, Any]]]]) – A list of the tags associated with the model package. For more information, see Tagging AWS resources in the AWS General Reference Guide .

  • task (Optional[str]) – The machine learning task your model package accomplishes. Common machine learning tasks include object detection and image classification.

  • validation_specification (Union[IResolvable, ValidationSpecificationProperty, Dict[str, Any], None]) – Specifies batch transform jobs that SageMaker runs to validate your model package.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

# model_input: Any

cfn_model_package_props = sagemaker.CfnModelPackageProps(
    additional_inference_specifications=[sagemaker.CfnModelPackage.AdditionalInferenceSpecificationDefinitionProperty(
        containers=[sagemaker.CfnModelPackage.ModelPackageContainerDefinitionProperty(
            image="image",

            # the properties below are optional
            container_hostname="containerHostname",
            environment={
                "environment_key": "environment"
            },
            framework="framework",
            framework_version="frameworkVersion",
            image_digest="imageDigest",
            model_data_source=sagemaker.CfnModelPackage.ModelDataSourceProperty(
                s3_data_source=sagemaker.CfnModelPackage.S3ModelDataSourceProperty(
                    compression_type="compressionType",
                    s3_data_type="s3DataType",
                    s3_uri="s3Uri",

                    # the properties below are optional
                    model_access_config=sagemaker.CfnModelPackage.ModelAccessConfigProperty(
                        accept_eula=False
                    )
                )
            ),
            model_data_url="modelDataUrl",
            model_input=model_input,
            nearest_model_name="nearestModelName"
        )],
        name="name",

        # the properties below are optional
        description="description",
        supported_content_types=["supportedContentTypes"],
        supported_realtime_inference_instance_types=["supportedRealtimeInferenceInstanceTypes"],
        supported_response_mime_types=["supportedResponseMimeTypes"],
        supported_transform_instance_types=["supportedTransformInstanceTypes"]
    )],
    additional_inference_specifications_to_add=[sagemaker.CfnModelPackage.AdditionalInferenceSpecificationDefinitionProperty(
        containers=[sagemaker.CfnModelPackage.ModelPackageContainerDefinitionProperty(
            image="image",

            # the properties below are optional
            container_hostname="containerHostname",
            environment={
                "environment_key": "environment"
            },
            framework="framework",
            framework_version="frameworkVersion",
            image_digest="imageDigest",
            model_data_source=sagemaker.CfnModelPackage.ModelDataSourceProperty(
                s3_data_source=sagemaker.CfnModelPackage.S3ModelDataSourceProperty(
                    compression_type="compressionType",
                    s3_data_type="s3DataType",
                    s3_uri="s3Uri",

                    # the properties below are optional
                    model_access_config=sagemaker.CfnModelPackage.ModelAccessConfigProperty(
                        accept_eula=False
                    )
                )
            ),
            model_data_url="modelDataUrl",
            model_input=model_input,
            nearest_model_name="nearestModelName"
        )],
        name="name",

        # the properties below are optional
        description="description",
        supported_content_types=["supportedContentTypes"],
        supported_realtime_inference_instance_types=["supportedRealtimeInferenceInstanceTypes"],
        supported_response_mime_types=["supportedResponseMimeTypes"],
        supported_transform_instance_types=["supportedTransformInstanceTypes"]
    )],
    approval_description="approvalDescription",
    certify_for_marketplace=False,
    client_token="clientToken",
    customer_metadata_properties={
        "customer_metadata_properties_key": "customerMetadataProperties"
    },
    domain="domain",
    drift_check_baselines=sagemaker.CfnModelPackage.DriftCheckBaselinesProperty(
        bias=sagemaker.CfnModelPackage.DriftCheckBiasProperty(
            config_file=sagemaker.CfnModelPackage.FileSourceProperty(
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest",
                content_type="contentType"
            ),
            post_training_constraints=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            ),
            pre_training_constraints=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            )
        ),
        explainability=sagemaker.CfnModelPackage.DriftCheckExplainabilityProperty(
            config_file=sagemaker.CfnModelPackage.FileSourceProperty(
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest",
                content_type="contentType"
            ),
            constraints=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            )
        ),
        model_data_quality=sagemaker.CfnModelPackage.DriftCheckModelDataQualityProperty(
            constraints=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            ),
            statistics=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            )
        ),
        model_quality=sagemaker.CfnModelPackage.DriftCheckModelQualityProperty(
            constraints=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            ),
            statistics=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            )
        )
    ),
    inference_specification=sagemaker.CfnModelPackage.InferenceSpecificationProperty(
        containers=[sagemaker.CfnModelPackage.ModelPackageContainerDefinitionProperty(
            image="image",

            # the properties below are optional
            container_hostname="containerHostname",
            environment={
                "environment_key": "environment"
            },
            framework="framework",
            framework_version="frameworkVersion",
            image_digest="imageDigest",
            model_data_source=sagemaker.CfnModelPackage.ModelDataSourceProperty(
                s3_data_source=sagemaker.CfnModelPackage.S3ModelDataSourceProperty(
                    compression_type="compressionType",
                    s3_data_type="s3DataType",
                    s3_uri="s3Uri",

                    # the properties below are optional
                    model_access_config=sagemaker.CfnModelPackage.ModelAccessConfigProperty(
                        accept_eula=False
                    )
                )
            ),
            model_data_url="modelDataUrl",
            model_input=model_input,
            nearest_model_name="nearestModelName"
        )],
        supported_content_types=["supportedContentTypes"],
        supported_response_mime_types=["supportedResponseMimeTypes"],

        # the properties below are optional
        supported_realtime_inference_instance_types=["supportedRealtimeInferenceInstanceTypes"],
        supported_transform_instance_types=["supportedTransformInstanceTypes"]
    ),
    last_modified_time="lastModifiedTime",
    metadata_properties=sagemaker.CfnModelPackage.MetadataPropertiesProperty(
        commit_id="commitId",
        generated_by="generatedBy",
        project_id="projectId",
        repository="repository"
    ),
    model_approval_status="modelApprovalStatus",
    model_card=sagemaker.CfnModelPackage.ModelCardProperty(
        model_card_content="modelCardContent",
        model_card_status="modelCardStatus"
    ),
    model_metrics=sagemaker.CfnModelPackage.ModelMetricsProperty(
        bias=sagemaker.CfnModelPackage.BiasProperty(
            post_training_report=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            ),
            pre_training_report=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            ),
            report=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            )
        ),
        explainability=sagemaker.CfnModelPackage.ExplainabilityProperty(
            report=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            )
        ),
        model_data_quality=sagemaker.CfnModelPackage.ModelDataQualityProperty(
            constraints=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            ),
            statistics=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            )
        ),
        model_quality=sagemaker.CfnModelPackage.ModelQualityProperty(
            constraints=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            ),
            statistics=sagemaker.CfnModelPackage.MetricsSourceProperty(
                content_type="contentType",
                s3_uri="s3Uri",

                # the properties below are optional
                content_digest="contentDigest"
            )
        )
    ),
    model_package_description="modelPackageDescription",
    model_package_group_name="modelPackageGroupName",
    model_package_name="modelPackageName",
    model_package_status_details=sagemaker.CfnModelPackage.ModelPackageStatusDetailsProperty(
        validation_statuses=[sagemaker.CfnModelPackage.ModelPackageStatusItemProperty(
            name="name",
            status="status",

            # the properties below are optional
            failure_reason="failureReason"
        )]
    ),
    model_package_version=123,
    sample_payload_url="samplePayloadUrl",
    security_config=sagemaker.CfnModelPackage.SecurityConfigProperty(
        kms_key_id="kmsKeyId"
    ),
    skip_model_validation="skipModelValidation",
    source_algorithm_specification=sagemaker.CfnModelPackage.SourceAlgorithmSpecificationProperty(
        source_algorithms=[sagemaker.CfnModelPackage.SourceAlgorithmProperty(
            algorithm_name="algorithmName",

            # the properties below are optional
            model_data_url="modelDataUrl"
        )]
    ),
    source_uri="sourceUri",
    tags=[CfnTag(
        key="key",
        value="value"
    )],
    task="task",
    validation_specification=sagemaker.CfnModelPackage.ValidationSpecificationProperty(
        validation_profiles=[sagemaker.CfnModelPackage.ValidationProfileProperty(
            profile_name="profileName",
            transform_job_definition=sagemaker.CfnModelPackage.TransformJobDefinitionProperty(
                transform_input=sagemaker.CfnModelPackage.TransformInputProperty(
                    data_source=sagemaker.CfnModelPackage.DataSourceProperty(
                        s3_data_source=sagemaker.CfnModelPackage.S3DataSourceProperty(
                            s3_data_type="s3DataType",
                            s3_uri="s3Uri"
                        )
                    ),

                    # the properties below are optional
                    compression_type="compressionType",
                    content_type="contentType",
                    split_type="splitType"
                ),
                transform_output=sagemaker.CfnModelPackage.TransformOutputProperty(
                    s3_output_path="s3OutputPath",

                    # the properties below are optional
                    accept="accept",
                    assemble_with="assembleWith",
                    kms_key_id="kmsKeyId"
                ),
                transform_resources=sagemaker.CfnModelPackage.TransformResourcesProperty(
                    instance_count=123,
                    instance_type="instanceType",

                    # the properties below are optional
                    volume_kms_key_id="volumeKmsKeyId"
                ),

                # the properties below are optional
                batch_strategy="batchStrategy",
                environment={
                    "environment_key": "environment"
                },
                max_concurrent_transforms=123,
                max_payload_in_mb=123
            )
        )],
        validation_role="validationRole"
    )
)

Attributes

additional_inference_specifications

An array of additional Inference Specification objects.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-additionalinferencespecifications

additional_inference_specifications_to_add

An array of additional Inference Specification objects to be added to the existing array.

The total number of additional Inference Specification objects cannot exceed 15. Each additional Inference Specification object specifies artifacts based on this model package that can be used on inference endpoints. Generally used with SageMaker Neo to store the compiled artifacts.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-additionalinferencespecificationstoadd

approval_description

A description provided when the model approval is set.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-approvaldescription

certify_for_marketplace

Whether the model package is to be certified to be listed on AWS Marketplace.

For information about listing model packages on AWS Marketplace, see List Your Algorithm or Model Package on AWS Marketplace .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-certifyformarketplace

client_token

A unique token that guarantees that the call to this API is idempotent.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-clienttoken

customer_metadata_properties

The metadata properties for the model package.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-customermetadataproperties

domain

The machine learning domain of your model package and its components.

Common machine learning domains include computer vision and natural language processing.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-domain

drift_check_baselines

Represents the drift check baselines that can be used when the model monitor is set using the model package.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-driftcheckbaselines

inference_specification

Defines how to perform inference generation after a training job is run.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-inferencespecification

last_modified_time

The last time the model package was modified.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-lastmodifiedtime

metadata_properties

Metadata properties of the tracking entity, trial, or trial component.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-metadataproperties

model_approval_status

The approval status of the model. This can be one of the following values.

  • APPROVED - The model is approved

  • REJECTED - The model is rejected.

  • PENDING_MANUAL_APPROVAL - The model is waiting for manual approval.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-modelapprovalstatus

model_card

An Amazon SageMaker Model Card.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-modelcard

model_metrics

Metrics for the model.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-modelmetrics

model_package_description

The description of the model package.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-modelpackagedescription

model_package_group_name

The model group to which the model belongs.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-modelpackagegroupname

model_package_name

The name of the model.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-modelpackagename

model_package_status_details

Specifies the validation and image scan statuses of the model package.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-modelpackagestatusdetails

model_package_version

The version number of a versioned model.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-modelpackageversion

sample_payload_url

The Amazon Simple Storage Service path where the sample payload are stored.

This path must point to a single gzip compressed tar archive (.tar.gz suffix).

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-samplepayloadurl

security_config

An optional AWS Key Management Service key to encrypt, decrypt, and re-encrypt model package information for regulated workloads with highly sensitive data.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-securityconfig

skip_model_validation

Indicates if you want to skip model validation.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-skipmodelvalidation

source_algorithm_specification

A list of algorithms that were used to create a model package.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-sourcealgorithmspecification

source_uri

The URI of the source for the model package.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-sourceuri

tags

A list of the tags associated with the model package.

For more information, see Tagging AWS resources in the AWS General Reference Guide .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-tags

task

The machine learning task your model package accomplishes.

Common machine learning tasks include object detection and image classification.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-task

validation_specification

Specifies batch transform jobs that SageMaker runs to validate your model package.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-modelpackage.html#cfn-sagemaker-modelpackage-validationspecification