CfnInferenceExperiment

class aws_cdk.aws_sagemaker.CfnInferenceExperiment(scope, id, *, endpoint_name, model_variants, name, role_arn, type, data_storage_config=None, description=None, desired_state=None, kms_key=None, schedule=None, shadow_mode_config=None, status_reason=None, tags=None)

Bases: CfnResource

Creates an inference experiment using the configurations specified in the request.

Use this API to setup and schedule an experiment to compare model variants on a Amazon SageMaker inference endpoint. For more information about inference experiments, see Shadow tests .

Amazon SageMaker begins your experiment at the scheduled time and routes traffic to your endpoint’s model variants based on your specified configuration.

While the experiment is in progress or after it has concluded, you can view metrics that compare your model variants. For more information, see View, monitor, and edit shadow tests .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-inferenceexperiment.html

CloudformationResource:

AWS::SageMaker::InferenceExperiment

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

cfn_inference_experiment = sagemaker.CfnInferenceExperiment(self, "MyCfnInferenceExperiment",
    endpoint_name="endpointName",
    model_variants=[sagemaker.CfnInferenceExperiment.ModelVariantConfigProperty(
        infrastructure_config=sagemaker.CfnInferenceExperiment.ModelInfrastructureConfigProperty(
            infrastructure_type="infrastructureType",
            real_time_inference_config=sagemaker.CfnInferenceExperiment.RealTimeInferenceConfigProperty(
                instance_count=123,
                instance_type="instanceType"
            )
        ),
        model_name="modelName",
        variant_name="variantName"
    )],
    name="name",
    role_arn="roleArn",
    type="type",

    # the properties below are optional
    data_storage_config=sagemaker.CfnInferenceExperiment.DataStorageConfigProperty(
        destination="destination",

        # the properties below are optional
        content_type=sagemaker.CfnInferenceExperiment.CaptureContentTypeHeaderProperty(
            csv_content_types=["csvContentTypes"],
            json_content_types=["jsonContentTypes"]
        ),
        kms_key="kmsKey"
    ),
    description="description",
    desired_state="desiredState",
    kms_key="kmsKey",
    schedule=sagemaker.CfnInferenceExperiment.InferenceExperimentScheduleProperty(
        end_time="endTime",
        start_time="startTime"
    ),
    shadow_mode_config=sagemaker.CfnInferenceExperiment.ShadowModeConfigProperty(
        shadow_model_variants=[sagemaker.CfnInferenceExperiment.ShadowModelVariantConfigProperty(
            sampling_percentage=123,
            shadow_model_variant_name="shadowModelVariantName"
        )],
        source_model_variant_name="sourceModelVariantName"
    ),
    status_reason="statusReason",
    tags=[CfnTag(
        key="key",
        value="value"
    )]
)
Parameters:
  • scope (Construct) – Scope in which this resource is defined.

  • id (str) – Construct identifier for this resource (unique in its scope).

  • endpoint_name (str) – The name of the endpoint.

  • model_variants (Union[IResolvable, Sequence[Union[IResolvable, ModelVariantConfigProperty, Dict[str, Any]]]]) – An array of ModelVariantConfigSummary objects. There is one for each variant in the inference experiment. Each ModelVariantConfigSummary object in the array describes the infrastructure configuration for deploying the corresponding variant.

  • name (str) – The name of the inference experiment.

  • role_arn (str) – The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.

  • type (str) – The type of the inference experiment.

  • data_storage_config (Union[IResolvable, DataStorageConfigProperty, Dict[str, Any], None]) – The Amazon S3 location and configuration for storing inference request and response data.

  • description (Optional[str]) – The description of the inference experiment.

  • desired_state (Optional[str]) – The desired state of the experiment after stopping. The possible states are the following:. - Completed : The experiment completed successfully - Cancelled : The experiment was canceled

  • kms_key (Optional[str]) – The AWS Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.

  • schedule (Union[IResolvable, InferenceExperimentScheduleProperty, Dict[str, Any], None]) – The duration for which the inference experiment ran or will run. The maximum duration that you can set for an inference experiment is 30 days.

  • shadow_mode_config (Union[IResolvable, ShadowModeConfigProperty, Dict[str, Any], None]) – The configuration of ShadowMode inference experiment type, which shows the production variant that takes all the inference requests, and the shadow variant to which Amazon SageMaker replicates a percentage of the inference requests. For the shadow variant it also shows the percentage of requests that Amazon SageMaker replicates.

  • status_reason (Optional[str]) – The error message for the inference experiment status result.

  • tags (Optional[Sequence[Union[CfnTag, Dict[str, Any]]]]) – An array of key-value pairs to apply to this resource. For more information, see Tag .

Methods

add_deletion_override(path)

Syntactic sugar for addOverride(path, undefined).

Parameters:

path (str) – The path of the value to delete.

Return type:

None

add_dependency(target)

Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.

This can be used for resources across stacks (or nested stack) boundaries and the dependency will automatically be transferred to the relevant scope.

Parameters:

target (CfnResource) –

Return type:

None

add_depends_on(target)

(deprecated) Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.

Parameters:

target (CfnResource) –

Deprecated:

use addDependency

Stability:

deprecated

Return type:

None

add_metadata(key, value)

Add a value to the CloudFormation Resource Metadata.

Parameters:
  • key (str) –

  • value (Any) –

See:

Return type:

None

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html

Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.

add_override(path, value)

Adds an override to the synthesized CloudFormation resource.

To add a property override, either use addPropertyOverride or prefix path with “Properties.” (i.e. Properties.TopicName).

If the override is nested, separate each nested level using a dot (.) in the path parameter. If there is an array as part of the nesting, specify the index in the path.

To include a literal . in the property name, prefix with a \. In most programming languages you will need to write this as "\\." because the \ itself will need to be escaped.

For example:

cfn_resource.add_override("Properties.GlobalSecondaryIndexes.0.Projection.NonKeyAttributes", ["myattribute"])
cfn_resource.add_override("Properties.GlobalSecondaryIndexes.1.ProjectionType", "INCLUDE")

would add the overrides Example:

"Properties": {
  "GlobalSecondaryIndexes": [
    {
      "Projection": {
        "NonKeyAttributes": [ "myattribute" ]
        ...
      }
      ...
    },
    {
      "ProjectionType": "INCLUDE"
      ...
    },
  ]
  ...
}

The value argument to addOverride will not be processed or translated in any way. Pass raw JSON values in here with the correct capitalization for CloudFormation. If you pass CDK classes or structs, they will be rendered with lowercased key names, and CloudFormation will reject the template.

Parameters:
  • path (str) –

    • The path of the property, you can use dot notation to override values in complex types. Any intermediate keys will be created as needed.

  • value (Any) –

    • The value. Could be primitive or complex.

Return type:

None

add_property_deletion_override(property_path)

Adds an override that deletes the value of a property from the resource definition.

Parameters:

property_path (str) – The path to the property.

Return type:

None

add_property_override(property_path, value)

Adds an override to a resource property.

Syntactic sugar for addOverride("Properties.<...>", value).

Parameters:
  • property_path (str) – The path of the property.

  • value (Any) – The value.

Return type:

None

apply_removal_policy(policy=None, *, apply_to_update_replace_policy=None, default=None)

Sets the deletion policy of the resource based on the removal policy specified.

The Removal Policy controls what happens to this resource when it stops being managed by CloudFormation, either because you’ve removed it from the CDK application or because you’ve made a change that requires the resource to be replaced.

The resource can be deleted (RemovalPolicy.DESTROY), or left in your AWS account for data recovery and cleanup later (RemovalPolicy.RETAIN). In some cases, a snapshot can be taken of the resource prior to deletion (RemovalPolicy.SNAPSHOT). A list of resources that support this policy can be found in the following link:

Parameters:
  • policy (Optional[RemovalPolicy]) –

  • apply_to_update_replace_policy (Optional[bool]) – Apply the same deletion policy to the resource’s “UpdateReplacePolicy”. Default: true

  • default (Optional[RemovalPolicy]) – The default policy to apply in case the removal policy is not defined. Default: - Default value is resource specific. To determine the default value for a resource, please consult that specific resource’s documentation.

See:

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-deletionpolicy.html#aws-attribute-deletionpolicy-options

Return type:

None

get_att(attribute_name, type_hint=None)

Returns a token for an runtime attribute of this resource.

Ideally, use generated attribute accessors (e.g. resource.arn), but this can be used for future compatibility in case there is no generated attribute.

Parameters:
  • attribute_name (str) – The name of the attribute.

  • type_hint (Optional[ResolutionTypeHint]) –

Return type:

Reference

get_metadata(key)

Retrieve a value value from the CloudFormation Resource Metadata.

Parameters:

key (str) –

See:

Return type:

Any

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html

Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.

inspect(inspector)

Examines the CloudFormation resource and discloses attributes.

Parameters:

inspector (TreeInspector) – tree inspector to collect and process attributes.

Return type:

None

obtain_dependencies()

Retrieves an array of resources this resource depends on.

This assembles dependencies on resources across stacks (including nested stacks) automatically.

Return type:

List[Union[Stack, CfnResource]]

obtain_resource_dependencies()

Get a shallow copy of dependencies between this resource and other resources in the same stack.

Return type:

List[CfnResource]

override_logical_id(new_logical_id)

Overrides the auto-generated logical ID with a specific ID.

Parameters:

new_logical_id (str) – The new logical ID to use for this stack element.

Return type:

None

remove_dependency(target)

Indicates that this resource no longer depends on another resource.

This can be used for resources across stacks (including nested stacks) and the dependency will automatically be removed from the relevant scope.

Parameters:

target (CfnResource) –

Return type:

None

replace_dependency(target, new_target)

Replaces one dependency with another.

Parameters:
Return type:

None

to_string()

Returns a string representation of this construct.

Return type:

str

Returns:

a string representation of this resource

Attributes

CFN_RESOURCE_TYPE_NAME = 'AWS::SageMaker::InferenceExperiment'
attr_arn

The ARN for your inference experiment.

CloudformationAttribute:

Arn

attr_creation_time

The timestamp at which the inference experiment was created.

CloudformationAttribute:

CreationTime

attr_endpoint_metadata

The metadata of the endpoint on which the inference experiment ran.

CloudformationAttribute:

EndpointMetadata

attr_endpoint_metadata_endpoint_config_name

EndpointMetadata.EndpointConfigName

Type:

cloudformationAttribute

attr_endpoint_metadata_endpoint_name

EndpointMetadata.EndpointName

Type:

cloudformationAttribute

attr_endpoint_metadata_endpoint_status

EndpointMetadata.EndpointStatus

Type:

cloudformationAttribute

attr_last_modified_time

The timestamp at which you last modified the inference experiment.

CloudformationAttribute:

LastModifiedTime

attr_status

.

  • Creating - Amazon SageMaker is creating your experiment.

  • Created - Amazon SageMaker has finished the creation of your experiment and will begin the experiment at the scheduled time.

  • Updating - When you make changes to your experiment, your experiment shows as updating.

  • Starting - Amazon SageMaker is beginning your experiment.

  • Running - Your experiment is in progress.

  • Stopping - Amazon SageMaker is stopping your experiment.

  • Completed - Your experiment has completed.

  • Cancelled - When you conclude your experiment early using the StopInferenceExperiment API, or if any operation fails with an unexpected error, it shows as cancelled.

CloudformationAttribute:

Status

Type:

The status of the inference experiment. The following are the possible statuses for an inference experiment

cfn_options

Options for this resource, such as condition, update policy etc.

cfn_resource_type

AWS resource type.

creation_stack

return:

the stack trace of the point where this Resource was created from, sourced from the +metadata+ entry typed +aws:cdk:logicalId+, and with the bottom-most node +internal+ entries filtered.

data_storage_config

The Amazon S3 location and configuration for storing inference request and response data.

description

The description of the inference experiment.

desired_state

The desired state of the experiment after stopping.

The possible states are the following:.

endpoint_name

The name of the endpoint.

kms_key

The AWS Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.

logical_id

The logical ID for this CloudFormation stack element.

The logical ID of the element is calculated from the path of the resource node in the construct tree.

To override this value, use overrideLogicalId(newLogicalId).

Returns:

the logical ID as a stringified token. This value will only get resolved during synthesis.

model_variants

An array of ModelVariantConfigSummary objects.

name

The name of the inference experiment.

node

The tree node.

ref

Return a string that will be resolved to a CloudFormation { Ref } for this element.

If, by any chance, the intrinsic reference of a resource is not a string, you could coerce it to an IResolvable through Lazy.any({ produce: resource.ref }).

role_arn

The ARN of the IAM role that Amazon SageMaker can assume to access model artifacts and container images, and manage Amazon SageMaker Inference endpoints for model deployment.

schedule

The duration for which the inference experiment ran or will run.

shadow_mode_config

The configuration of ShadowMode inference experiment type, which shows the production variant that takes all the inference requests, and the shadow variant to which Amazon SageMaker replicates a percentage of the inference requests.

stack

The stack in which this element is defined.

CfnElements must be defined within a stack scope (directly or indirectly).

status_reason

The error message for the inference experiment status result.

tags

Tag Manager which manages the tags for this resource.

tags_raw

An array of key-value pairs to apply to this resource.

type

The type of the inference experiment.

Static Methods

classmethod is_cfn_element(x)

Returns true if a construct is a stack element (i.e. part of the synthesized cloudformation template).

Uses duck-typing instead of instanceof to allow stack elements from different versions of this library to be included in the same stack.

Parameters:

x (Any) –

Return type:

bool

Returns:

The construct as a stack element or undefined if it is not a stack element.

classmethod is_cfn_resource(x)

Check whether the given object is a CfnResource.

Parameters:

x (Any) –

Return type:

bool

classmethod is_construct(x)

Checks if x is a construct.

Use this method instead of instanceof to properly detect Construct instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the constructs library on disk are seen as independent, completely different libraries. As a consequence, the class Construct in each copy of the constructs library is seen as a different class, and an instance of one class will not test as instanceof the other class. npm install will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the constructs library can be accidentally installed, and instanceof will behave unpredictably. It is safest to avoid using instanceof, and using this type-testing method instead.

Parameters:

x (Any) – Any object.

Return type:

bool

Returns:

true if x is an object created from a class which extends Construct.

CaptureContentTypeHeaderProperty

class CfnInferenceExperiment.CaptureContentTypeHeaderProperty(*, csv_content_types=None, json_content_types=None)

Bases: object

Configuration specifying how to treat different headers.

If no headers are specified Amazon SageMaker will by default base64 encode when capturing the data.

Parameters:
  • csv_content_types (Optional[Sequence[str]]) – The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.

  • json_content_types (Optional[Sequence[str]]) – The list of all content type headers that SageMaker will treat as JSON and capture accordingly.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-capturecontenttypeheader.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

capture_content_type_header_property = sagemaker.CfnInferenceExperiment.CaptureContentTypeHeaderProperty(
    csv_content_types=["csvContentTypes"],
    json_content_types=["jsonContentTypes"]
)

Attributes

csv_content_types

The list of all content type headers that Amazon SageMaker will treat as CSV and capture accordingly.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-capturecontenttypeheader.html#cfn-sagemaker-inferenceexperiment-capturecontenttypeheader-csvcontenttypes

json_content_types

The list of all content type headers that SageMaker will treat as JSON and capture accordingly.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-capturecontenttypeheader.html#cfn-sagemaker-inferenceexperiment-capturecontenttypeheader-jsoncontenttypes

DataStorageConfigProperty

class CfnInferenceExperiment.DataStorageConfigProperty(*, destination, content_type=None, kms_key=None)

Bases: object

The Amazon S3 location and configuration for storing inference request and response data.

This is an optional parameter that you can use for data capture. For more information, see Capture data .

Parameters:
  • destination (str) – The Amazon S3 bucket where the inference request and response data is stored.

  • content_type (Union[IResolvable, CaptureContentTypeHeaderProperty, Dict[str, Any], None]) – Configuration specifying how to treat different headers. If no headers are specified SageMaker will by default base64 encode when capturing the data.

  • kms_key (Optional[str]) – The AWS Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-datastorageconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

data_storage_config_property = sagemaker.CfnInferenceExperiment.DataStorageConfigProperty(
    destination="destination",

    # the properties below are optional
    content_type=sagemaker.CfnInferenceExperiment.CaptureContentTypeHeaderProperty(
        csv_content_types=["csvContentTypes"],
        json_content_types=["jsonContentTypes"]
    ),
    kms_key="kmsKey"
)

Attributes

content_type

Configuration specifying how to treat different headers.

If no headers are specified SageMaker will by default base64 encode when capturing the data.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-datastorageconfig.html#cfn-sagemaker-inferenceexperiment-datastorageconfig-contenttype

destination

The Amazon S3 bucket where the inference request and response data is stored.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-datastorageconfig.html#cfn-sagemaker-inferenceexperiment-datastorageconfig-destination

kms_key

The AWS Key Management Service key that Amazon SageMaker uses to encrypt captured data at rest using Amazon S3 server-side encryption.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-datastorageconfig.html#cfn-sagemaker-inferenceexperiment-datastorageconfig-kmskey

EndpointMetadataProperty

class CfnInferenceExperiment.EndpointMetadataProperty(*, endpoint_name, endpoint_config_name=None, endpoint_status=None)

Bases: object

The metadata of the endpoint.

Parameters:
See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-endpointmetadata.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

endpoint_metadata_property = sagemaker.CfnInferenceExperiment.EndpointMetadataProperty(
    endpoint_name="endpointName",

    # the properties below are optional
    endpoint_config_name="endpointConfigName",
    endpoint_status="endpointStatus"
)

Attributes

endpoint_config_name

The name of the endpoint configuration.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-endpointmetadata.html#cfn-sagemaker-inferenceexperiment-endpointmetadata-endpointconfigname

endpoint_name

The name of the endpoint.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-endpointmetadata.html#cfn-sagemaker-inferenceexperiment-endpointmetadata-endpointname

endpoint_status

The status of the endpoint.

For possible values of the status of an endpoint, see ` <https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-endpointmetadata.html#cfn-sagemaker-inferenceexperiment-endpointmetadata-endpointstatus>`_ .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-endpointmetadata.html#cfn-sagemaker-inferenceexperiment-endpointmetadata-endpointstatus

InferenceExperimentScheduleProperty

class CfnInferenceExperiment.InferenceExperimentScheduleProperty(*, end_time=None, start_time=None)

Bases: object

The start and end times of an inference experiment.

The maximum duration that you can set for an inference experiment is 30 days.

Parameters:
  • end_time (Optional[str]) – The timestamp at which the inference experiment ended or will end.

  • start_time (Optional[str]) – The timestamp at which the inference experiment started or will start.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-inferenceexperimentschedule.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

inference_experiment_schedule_property = sagemaker.CfnInferenceExperiment.InferenceExperimentScheduleProperty(
    end_time="endTime",
    start_time="startTime"
)

Attributes

end_time

The timestamp at which the inference experiment ended or will end.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-inferenceexperimentschedule.html#cfn-sagemaker-inferenceexperiment-inferenceexperimentschedule-endtime

start_time

The timestamp at which the inference experiment started or will start.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-inferenceexperimentschedule.html#cfn-sagemaker-inferenceexperiment-inferenceexperimentschedule-starttime

ModelInfrastructureConfigProperty

class CfnInferenceExperiment.ModelInfrastructureConfigProperty(*, infrastructure_type, real_time_inference_config)

Bases: object

The configuration for the infrastructure that the model will be deployed to.

Parameters:
  • infrastructure_type (str) – The inference option to which to deploy your model. Possible values are the following:. - RealTime : Deploy to real-time inference.

  • real_time_inference_config (Union[IResolvable, RealTimeInferenceConfigProperty, Dict[str, Any]]) – The infrastructure configuration for deploying the model to real-time inference.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-modelinfrastructureconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

model_infrastructure_config_property = sagemaker.CfnInferenceExperiment.ModelInfrastructureConfigProperty(
    infrastructure_type="infrastructureType",
    real_time_inference_config=sagemaker.CfnInferenceExperiment.RealTimeInferenceConfigProperty(
        instance_count=123,
        instance_type="instanceType"
    )
)

Attributes

infrastructure_type

.

  • RealTime : Deploy to real-time inference.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-modelinfrastructureconfig.html#cfn-sagemaker-inferenceexperiment-modelinfrastructureconfig-infrastructuretype

Type:

The inference option to which to deploy your model. Possible values are the following

real_time_inference_config

The infrastructure configuration for deploying the model to real-time inference.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-modelinfrastructureconfig.html#cfn-sagemaker-inferenceexperiment-modelinfrastructureconfig-realtimeinferenceconfig

ModelVariantConfigProperty

class CfnInferenceExperiment.ModelVariantConfigProperty(*, infrastructure_config, model_name, variant_name)

Bases: object

Contains information about the deployment options of a model.

Parameters:
  • infrastructure_config (Union[IResolvable, ModelInfrastructureConfigProperty, Dict[str, Any]]) – The configuration for the infrastructure that the model will be deployed to.

  • model_name (str) – The name of the Amazon SageMaker Model entity.

  • variant_name (str) – The name of the variant.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-modelvariantconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

model_variant_config_property = sagemaker.CfnInferenceExperiment.ModelVariantConfigProperty(
    infrastructure_config=sagemaker.CfnInferenceExperiment.ModelInfrastructureConfigProperty(
        infrastructure_type="infrastructureType",
        real_time_inference_config=sagemaker.CfnInferenceExperiment.RealTimeInferenceConfigProperty(
            instance_count=123,
            instance_type="instanceType"
        )
    ),
    model_name="modelName",
    variant_name="variantName"
)

Attributes

infrastructure_config

The configuration for the infrastructure that the model will be deployed to.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-modelvariantconfig.html#cfn-sagemaker-inferenceexperiment-modelvariantconfig-infrastructureconfig

model_name

The name of the Amazon SageMaker Model entity.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-modelvariantconfig.html#cfn-sagemaker-inferenceexperiment-modelvariantconfig-modelname

variant_name

The name of the variant.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-modelvariantconfig.html#cfn-sagemaker-inferenceexperiment-modelvariantconfig-variantname

RealTimeInferenceConfigProperty

class CfnInferenceExperiment.RealTimeInferenceConfigProperty(*, instance_count, instance_type)

Bases: object

The infrastructure configuration for deploying the model to a real-time inference endpoint.

Parameters:
  • instance_count (Union[int, float]) – The number of instances of the type specified by InstanceType .

  • instance_type (str) – The instance type the model is deployed to.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-realtimeinferenceconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

real_time_inference_config_property = sagemaker.CfnInferenceExperiment.RealTimeInferenceConfigProperty(
    instance_count=123,
    instance_type="instanceType"
)

Attributes

instance_count

The number of instances of the type specified by InstanceType .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-realtimeinferenceconfig.html#cfn-sagemaker-inferenceexperiment-realtimeinferenceconfig-instancecount

instance_type

The instance type the model is deployed to.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-realtimeinferenceconfig.html#cfn-sagemaker-inferenceexperiment-realtimeinferenceconfig-instancetype

ShadowModeConfigProperty

class CfnInferenceExperiment.ShadowModeConfigProperty(*, shadow_model_variants, source_model_variant_name)

Bases: object

The configuration of ShadowMode inference experiment type, which specifies a production variant to take all the inference requests, and a shadow variant to which Amazon SageMaker replicates a percentage of the inference requests.

For the shadow variant it also specifies the percentage of requests that Amazon SageMaker replicates.

Parameters:
  • shadow_model_variants (Union[IResolvable, Sequence[Union[IResolvable, ShadowModelVariantConfigProperty, Dict[str, Any]]]]) – List of shadow variant configurations.

  • source_model_variant_name (str) – The name of the production variant, which takes all the inference requests.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-shadowmodeconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

shadow_mode_config_property = sagemaker.CfnInferenceExperiment.ShadowModeConfigProperty(
    shadow_model_variants=[sagemaker.CfnInferenceExperiment.ShadowModelVariantConfigProperty(
        sampling_percentage=123,
        shadow_model_variant_name="shadowModelVariantName"
    )],
    source_model_variant_name="sourceModelVariantName"
)

Attributes

shadow_model_variants

List of shadow variant configurations.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-shadowmodeconfig.html#cfn-sagemaker-inferenceexperiment-shadowmodeconfig-shadowmodelvariants

source_model_variant_name

The name of the production variant, which takes all the inference requests.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-shadowmodeconfig.html#cfn-sagemaker-inferenceexperiment-shadowmodeconfig-sourcemodelvariantname

ShadowModelVariantConfigProperty

class CfnInferenceExperiment.ShadowModelVariantConfigProperty(*, sampling_percentage, shadow_model_variant_name)

Bases: object

The name and sampling percentage of a shadow variant.

Parameters:
  • sampling_percentage (Union[int, float]) – The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.

  • shadow_model_variant_name (str) – The name of the shadow variant.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-shadowmodelvariantconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

shadow_model_variant_config_property = sagemaker.CfnInferenceExperiment.ShadowModelVariantConfigProperty(
    sampling_percentage=123,
    shadow_model_variant_name="shadowModelVariantName"
)

Attributes

sampling_percentage

The percentage of inference requests that Amazon SageMaker replicates from the production variant to the shadow variant.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-shadowmodelvariantconfig.html#cfn-sagemaker-inferenceexperiment-shadowmodelvariantconfig-samplingpercentage

shadow_model_variant_name

The name of the shadow variant.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-inferenceexperiment-shadowmodelvariantconfig.html#cfn-sagemaker-inferenceexperiment-shadowmodelvariantconfig-shadowmodelvariantname