CfnEndpointConfig

class aws_cdk.aws_sagemaker.CfnEndpointConfig(scope, id, *, production_variants, async_inference_config=None, data_capture_config=None, enable_network_isolation=None, endpoint_config_name=None, execution_role_arn=None, explainer_config=None, kms_key_id=None, shadow_production_variants=None, tags=None, vpc_config=None)

Bases: CfnResource

The AWS::SageMaker::EndpointConfig resource creates a configuration for an Amazon SageMaker endpoint.

For more information, see CreateEndpointConfig in the SageMaker Developer Guide .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-sagemaker-endpointconfig.html

CloudformationResource:

AWS::SageMaker::EndpointConfig

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

cfn_endpoint_config = sagemaker.CfnEndpointConfig(self, "MyCfnEndpointConfig",
    production_variants=[sagemaker.CfnEndpointConfig.ProductionVariantProperty(
        variant_name="variantName",

        # the properties below are optional
        accelerator_type="acceleratorType",
        container_startup_health_check_timeout_in_seconds=123,
        enable_ssm_access=False,
        initial_instance_count=123,
        initial_variant_weight=123,
        instance_type="instanceType",
        managed_instance_scaling=sagemaker.CfnEndpointConfig.ManagedInstanceScalingProperty(
            max_instance_count=123,
            min_instance_count=123,
            status="status"
        ),
        model_data_download_timeout_in_seconds=123,
        model_name="modelName",
        routing_config=sagemaker.CfnEndpointConfig.RoutingConfigProperty(
            routing_strategy="routingStrategy"
        ),
        serverless_config=sagemaker.CfnEndpointConfig.ServerlessConfigProperty(
            max_concurrency=123,
            memory_size_in_mb=123,

            # the properties below are optional
            provisioned_concurrency=123
        ),
        volume_size_in_gb=123
    )],

    # the properties below are optional
    async_inference_config=sagemaker.CfnEndpointConfig.AsyncInferenceConfigProperty(
        output_config=sagemaker.CfnEndpointConfig.AsyncInferenceOutputConfigProperty(
            kms_key_id="kmsKeyId",
            notification_config=sagemaker.CfnEndpointConfig.AsyncInferenceNotificationConfigProperty(
                error_topic="errorTopic",
                include_inference_response_in=["includeInferenceResponseIn"],
                success_topic="successTopic"
            ),
            s3_failure_path="s3FailurePath",
            s3_output_path="s3OutputPath"
        ),

        # the properties below are optional
        client_config=sagemaker.CfnEndpointConfig.AsyncInferenceClientConfigProperty(
            max_concurrent_invocations_per_instance=123
        )
    ),
    data_capture_config=sagemaker.CfnEndpointConfig.DataCaptureConfigProperty(
        capture_options=[sagemaker.CfnEndpointConfig.CaptureOptionProperty(
            capture_mode="captureMode"
        )],
        destination_s3_uri="destinationS3Uri",
        initial_sampling_percentage=123,

        # the properties below are optional
        capture_content_type_header=sagemaker.CfnEndpointConfig.CaptureContentTypeHeaderProperty(
            csv_content_types=["csvContentTypes"],
            json_content_types=["jsonContentTypes"]
        ),
        enable_capture=False,
        kms_key_id="kmsKeyId"
    ),
    enable_network_isolation=False,
    endpoint_config_name="endpointConfigName",
    execution_role_arn="executionRoleArn",
    explainer_config=sagemaker.CfnEndpointConfig.ExplainerConfigProperty(
        clarify_explainer_config=sagemaker.CfnEndpointConfig.ClarifyExplainerConfigProperty(
            shap_config=sagemaker.CfnEndpointConfig.ClarifyShapConfigProperty(
                shap_baseline_config=sagemaker.CfnEndpointConfig.ClarifyShapBaselineConfigProperty(
                    mime_type="mimeType",
                    shap_baseline="shapBaseline",
                    shap_baseline_uri="shapBaselineUri"
                ),

                # the properties below are optional
                number_of_samples=123,
                seed=123,
                text_config=sagemaker.CfnEndpointConfig.ClarifyTextConfigProperty(
                    granularity="granularity",
                    language="language"
                ),
                use_logit=False
            ),

            # the properties below are optional
            enable_explanations="enableExplanations",
            inference_config=sagemaker.CfnEndpointConfig.ClarifyInferenceConfigProperty(
                content_template="contentTemplate",
                feature_headers=["featureHeaders"],
                features_attribute="featuresAttribute",
                feature_types=["featureTypes"],
                label_attribute="labelAttribute",
                label_headers=["labelHeaders"],
                label_index=123,
                max_payload_in_mb=123,
                max_record_count=123,
                probability_attribute="probabilityAttribute",
                probability_index=123
            )
        )
    ),
    kms_key_id="kmsKeyId",
    shadow_production_variants=[sagemaker.CfnEndpointConfig.ProductionVariantProperty(
        variant_name="variantName",

        # the properties below are optional
        accelerator_type="acceleratorType",
        container_startup_health_check_timeout_in_seconds=123,
        enable_ssm_access=False,
        initial_instance_count=123,
        initial_variant_weight=123,
        instance_type="instanceType",
        managed_instance_scaling=sagemaker.CfnEndpointConfig.ManagedInstanceScalingProperty(
            max_instance_count=123,
            min_instance_count=123,
            status="status"
        ),
        model_data_download_timeout_in_seconds=123,
        model_name="modelName",
        routing_config=sagemaker.CfnEndpointConfig.RoutingConfigProperty(
            routing_strategy="routingStrategy"
        ),
        serverless_config=sagemaker.CfnEndpointConfig.ServerlessConfigProperty(
            max_concurrency=123,
            memory_size_in_mb=123,

            # the properties below are optional
            provisioned_concurrency=123
        ),
        volume_size_in_gb=123
    )],
    tags=[CfnTag(
        key="key",
        value="value"
    )],
    vpc_config=sagemaker.CfnEndpointConfig.VpcConfigProperty(
        security_group_ids=["securityGroupIds"],
        subnets=["subnets"]
    )
)
Parameters:
  • scope (Construct) – Scope in which this resource is defined.

  • id (str) – Construct identifier for this resource (unique in its scope).

  • production_variants (Union[IResolvable, Sequence[Union[IResolvable, ProductionVariantProperty, Dict[str, Any]]]]) – A list of ProductionVariant objects, one for each model that you want to host at this endpoint.

  • async_inference_config (Union[IResolvable, AsyncInferenceConfigProperty, Dict[str, Any], None]) – Specifies configuration for how an endpoint performs asynchronous inference.

  • data_capture_config (Union[IResolvable, DataCaptureConfigProperty, Dict[str, Any], None]) – Specifies how to capture endpoint data for model monitor. The data capture configuration applies to all production variants hosted at the endpoint.

  • enable_network_isolation (Union[bool, IResolvable, None]) –

  • endpoint_config_name (Optional[str]) – The name of the endpoint configuration.

  • execution_role_arn (Optional[str]) –

  • explainer_config (Union[IResolvable, ExplainerConfigProperty, Dict[str, Any], None]) – A parameter to activate explainers.

  • kms_key_id (Optional[str]) – The Amazon Resource Name (ARN) of an AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint. - Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab - Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab - Alias name: alias/ExampleAlias - Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias The KMS key policy must grant permission to the IAM role that you specify in your CreateEndpoint , UpdateEndpoint requests. For more information, refer to the AWS Key Management Service section Using Key Policies in AWS KMS .. epigraph:: Certain Nitro-based instances include local storage, dependent on the instance type. Local storage volumes are encrypted using a hardware module on the instance. You can’t request a KmsKeyId when using an instance type with local storage. If any of the models that you specify in the ProductionVariants parameter use nitro-based instances with local storage, do not specify a value for the KmsKeyId parameter. If you specify a value for KmsKeyId when using any nitro-based instances with local storage, the call to CreateEndpointConfig fails. For a list of instance types that support local instance storage, see Instance Store Volumes . For more information about local instance storage encryption, see SSD Instance Store Volumes .

  • shadow_production_variants (Union[IResolvable, Sequence[Union[IResolvable, ProductionVariantProperty, Dict[str, Any]]], None]) – Array of ProductionVariant objects. There is one for each model that you want to host at this endpoint in shadow mode with production traffic replicated from the model specified on ProductionVariants . If you use this field, you can only specify one variant for ProductionVariants and one variant for ShadowProductionVariants .

  • tags (Optional[Sequence[Union[CfnTag, Dict[str, Any]]]]) – A list of key-value pairs to apply to this resource. For more information, see Resource Tag and Using Cost Allocation Tags .

  • vpc_config (Union[IResolvable, VpcConfigProperty, Dict[str, Any], None]) –

Methods

add_deletion_override(path)

Syntactic sugar for addOverride(path, undefined).

Parameters:

path (str) – The path of the value to delete.

Return type:

None

add_dependency(target)

Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.

This can be used for resources across stacks (or nested stack) boundaries and the dependency will automatically be transferred to the relevant scope.

Parameters:

target (CfnResource) –

Return type:

None

add_depends_on(target)

(deprecated) Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.

Parameters:

target (CfnResource) –

Deprecated:

use addDependency

Stability:

deprecated

Return type:

None

add_metadata(key, value)

Add a value to the CloudFormation Resource Metadata.

Parameters:
  • key (str) –

  • value (Any) –

See:

Return type:

None

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html

Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.

add_override(path, value)

Adds an override to the synthesized CloudFormation resource.

To add a property override, either use addPropertyOverride or prefix path with “Properties.” (i.e. Properties.TopicName).

If the override is nested, separate each nested level using a dot (.) in the path parameter. If there is an array as part of the nesting, specify the index in the path.

To include a literal . in the property name, prefix with a \. In most programming languages you will need to write this as "\\." because the \ itself will need to be escaped.

For example:

cfn_resource.add_override("Properties.GlobalSecondaryIndexes.0.Projection.NonKeyAttributes", ["myattribute"])
cfn_resource.add_override("Properties.GlobalSecondaryIndexes.1.ProjectionType", "INCLUDE")

would add the overrides Example:

"Properties": {
  "GlobalSecondaryIndexes": [
    {
      "Projection": {
        "NonKeyAttributes": [ "myattribute" ]
        ...
      }
      ...
    },
    {
      "ProjectionType": "INCLUDE"
      ...
    },
  ]
  ...
}

The value argument to addOverride will not be processed or translated in any way. Pass raw JSON values in here with the correct capitalization for CloudFormation. If you pass CDK classes or structs, they will be rendered with lowercased key names, and CloudFormation will reject the template.

Parameters:
  • path (str) –

    • The path of the property, you can use dot notation to override values in complex types. Any intermediate keys will be created as needed.

  • value (Any) –

    • The value. Could be primitive or complex.

Return type:

None

add_property_deletion_override(property_path)

Adds an override that deletes the value of a property from the resource definition.

Parameters:

property_path (str) – The path to the property.

Return type:

None

add_property_override(property_path, value)

Adds an override to a resource property.

Syntactic sugar for addOverride("Properties.<...>", value).

Parameters:
  • property_path (str) – The path of the property.

  • value (Any) – The value.

Return type:

None

apply_removal_policy(policy=None, *, apply_to_update_replace_policy=None, default=None)

Sets the deletion policy of the resource based on the removal policy specified.

The Removal Policy controls what happens to this resource when it stops being managed by CloudFormation, either because you’ve removed it from the CDK application or because you’ve made a change that requires the resource to be replaced.

The resource can be deleted (RemovalPolicy.DESTROY), or left in your AWS account for data recovery and cleanup later (RemovalPolicy.RETAIN). In some cases, a snapshot can be taken of the resource prior to deletion (RemovalPolicy.SNAPSHOT). A list of resources that support this policy can be found in the following link:

Parameters:
  • policy (Optional[RemovalPolicy]) –

  • apply_to_update_replace_policy (Optional[bool]) – Apply the same deletion policy to the resource’s “UpdateReplacePolicy”. Default: true

  • default (Optional[RemovalPolicy]) – The default policy to apply in case the removal policy is not defined. Default: - Default value is resource specific. To determine the default value for a resource, please consult that specific resource’s documentation.

See:

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-deletionpolicy.html#aws-attribute-deletionpolicy-options

Return type:

None

get_att(attribute_name, type_hint=None)

Returns a token for an runtime attribute of this resource.

Ideally, use generated attribute accessors (e.g. resource.arn), but this can be used for future compatibility in case there is no generated attribute.

Parameters:
  • attribute_name (str) – The name of the attribute.

  • type_hint (Optional[ResolutionTypeHint]) –

Return type:

Reference

get_metadata(key)

Retrieve a value value from the CloudFormation Resource Metadata.

Parameters:

key (str) –

See:

Return type:

Any

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html

Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.

inspect(inspector)

Examines the CloudFormation resource and discloses attributes.

Parameters:

inspector (TreeInspector) – tree inspector to collect and process attributes.

Return type:

None

obtain_dependencies()

Retrieves an array of resources this resource depends on.

This assembles dependencies on resources across stacks (including nested stacks) automatically.

Return type:

List[Union[Stack, CfnResource]]

obtain_resource_dependencies()

Get a shallow copy of dependencies between this resource and other resources in the same stack.

Return type:

List[CfnResource]

override_logical_id(new_logical_id)

Overrides the auto-generated logical ID with a specific ID.

Parameters:

new_logical_id (str) – The new logical ID to use for this stack element.

Return type:

None

remove_dependency(target)

Indicates that this resource no longer depends on another resource.

This can be used for resources across stacks (including nested stacks) and the dependency will automatically be removed from the relevant scope.

Parameters:

target (CfnResource) –

Return type:

None

replace_dependency(target, new_target)

Replaces one dependency with another.

Parameters:
Return type:

None

to_string()

Returns a string representation of this construct.

Return type:

str

Returns:

a string representation of this resource

Attributes

CFN_RESOURCE_TYPE_NAME = 'AWS::SageMaker::EndpointConfig'
async_inference_config

Specifies configuration for how an endpoint performs asynchronous inference.

attr_endpoint_config_name

The name of the endpoint configuration, such as MyEndpointConfiguration .

CloudformationAttribute:

EndpointConfigName

attr_id

Id

Type:

cloudformationAttribute

cfn_options

Options for this resource, such as condition, update policy etc.

cfn_resource_type

AWS resource type.

creation_stack

return:

the stack trace of the point where this Resource was created from, sourced from the +metadata+ entry typed +aws:cdk:logicalId+, and with the bottom-most node +internal+ entries filtered.

data_capture_config

Specifies how to capture endpoint data for model monitor.

enable_network_isolation
endpoint_config_name

The name of the endpoint configuration.

execution_role_arn
explainer_config

A parameter to activate explainers.

kms_key_id

The Amazon Resource Name (ARN) of an AWS Key Management Service key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance that hosts the endpoint.

logical_id

The logical ID for this CloudFormation stack element.

The logical ID of the element is calculated from the path of the resource node in the construct tree.

To override this value, use overrideLogicalId(newLogicalId).

Returns:

the logical ID as a stringified token. This value will only get resolved during synthesis.

node

The tree node.

production_variants

A list of ProductionVariant objects, one for each model that you want to host at this endpoint.

ref

Return a string that will be resolved to a CloudFormation { Ref } for this element.

If, by any chance, the intrinsic reference of a resource is not a string, you could coerce it to an IResolvable through Lazy.any({ produce: resource.ref }).

shadow_production_variants

Array of ProductionVariant objects.

stack

The stack in which this element is defined.

CfnElements must be defined within a stack scope (directly or indirectly).

tags

Tag Manager which manages the tags for this resource.

tags_raw

A list of key-value pairs to apply to this resource.

vpc_config

Static Methods

classmethod is_cfn_element(x)

Returns true if a construct is a stack element (i.e. part of the synthesized cloudformation template).

Uses duck-typing instead of instanceof to allow stack elements from different versions of this library to be included in the same stack.

Parameters:

x (Any) –

Return type:

bool

Returns:

The construct as a stack element or undefined if it is not a stack element.

classmethod is_cfn_resource(x)

Check whether the given object is a CfnResource.

Parameters:

x (Any) –

Return type:

bool

classmethod is_construct(x)

Checks if x is a construct.

Use this method instead of instanceof to properly detect Construct instances, even when the construct library is symlinked.

Explanation: in JavaScript, multiple copies of the constructs library on disk are seen as independent, completely different libraries. As a consequence, the class Construct in each copy of the constructs library is seen as a different class, and an instance of one class will not test as instanceof the other class. npm install will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of the constructs library can be accidentally installed, and instanceof will behave unpredictably. It is safest to avoid using instanceof, and using this type-testing method instead.

Parameters:

x (Any) – Any object.

Return type:

bool

Returns:

true if x is an object created from a class which extends Construct.

AsyncInferenceClientConfigProperty

class CfnEndpointConfig.AsyncInferenceClientConfigProperty(*, max_concurrent_invocations_per_instance=None)

Bases: object

Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

Parameters:

max_concurrent_invocations_per_instance (Union[int, float, None]) – The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker will choose an optimal value for you.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferenceclientconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

async_inference_client_config_property = sagemaker.CfnEndpointConfig.AsyncInferenceClientConfigProperty(
    max_concurrent_invocations_per_instance=123
)

Attributes

max_concurrent_invocations_per_instance

The maximum number of concurrent requests sent by the SageMaker client to the model container.

If no value is provided, SageMaker will choose an optimal value for you.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferenceclientconfig.html#cfn-sagemaker-endpointconfig-asyncinferenceclientconfig-maxconcurrentinvocationsperinstance

AsyncInferenceConfigProperty

class CfnEndpointConfig.AsyncInferenceConfigProperty(*, output_config, client_config=None)

Bases: object

Specifies configuration for how an endpoint performs asynchronous inference.

Parameters:
See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferenceconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

async_inference_config_property = sagemaker.CfnEndpointConfig.AsyncInferenceConfigProperty(
    output_config=sagemaker.CfnEndpointConfig.AsyncInferenceOutputConfigProperty(
        kms_key_id="kmsKeyId",
        notification_config=sagemaker.CfnEndpointConfig.AsyncInferenceNotificationConfigProperty(
            error_topic="errorTopic",
            include_inference_response_in=["includeInferenceResponseIn"],
            success_topic="successTopic"
        ),
        s3_failure_path="s3FailurePath",
        s3_output_path="s3OutputPath"
    ),

    # the properties below are optional
    client_config=sagemaker.CfnEndpointConfig.AsyncInferenceClientConfigProperty(
        max_concurrent_invocations_per_instance=123
    )
)

Attributes

client_config

Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferenceconfig.html#cfn-sagemaker-endpointconfig-asyncinferenceconfig-clientconfig

output_config

Specifies the configuration for asynchronous inference invocation outputs.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferenceconfig.html#cfn-sagemaker-endpointconfig-asyncinferenceconfig-outputconfig

AsyncInferenceNotificationConfigProperty

class CfnEndpointConfig.AsyncInferenceNotificationConfigProperty(*, error_topic=None, include_inference_response_in=None, success_topic=None)

Bases: object

Specifies the configuration for notifications of inference results for asynchronous inference.

Parameters:
  • error_topic (Optional[str]) – Amazon SNS topic to post a notification to when an inference fails. If no topic is provided, no notification is sent on failure.

  • include_inference_response_in (Optional[Sequence[str]]) – The Amazon SNS topics where you want the inference response to be included. .. epigraph:: The inference response is included only if the response size is less than or equal to 128 KB.

  • success_topic (Optional[str]) – Amazon SNS topic to post a notification to when an inference completes successfully. If no topic is provided, no notification is sent on success.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferencenotificationconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

async_inference_notification_config_property = sagemaker.CfnEndpointConfig.AsyncInferenceNotificationConfigProperty(
    error_topic="errorTopic",
    include_inference_response_in=["includeInferenceResponseIn"],
    success_topic="successTopic"
)

Attributes

error_topic

Amazon SNS topic to post a notification to when an inference fails.

If no topic is provided, no notification is sent on failure.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferencenotificationconfig.html#cfn-sagemaker-endpointconfig-asyncinferencenotificationconfig-errortopic

include_inference_response_in

The Amazon SNS topics where you want the inference response to be included.

The inference response is included only if the response size is less than or equal to 128 KB.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferencenotificationconfig.html#cfn-sagemaker-endpointconfig-asyncinferencenotificationconfig-includeinferenceresponsein

success_topic

Amazon SNS topic to post a notification to when an inference completes successfully.

If no topic is provided, no notification is sent on success.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferencenotificationconfig.html#cfn-sagemaker-endpointconfig-asyncinferencenotificationconfig-successtopic

AsyncInferenceOutputConfigProperty

class CfnEndpointConfig.AsyncInferenceOutputConfigProperty(*, kms_key_id=None, notification_config=None, s3_failure_path=None, s3_output_path=None)

Bases: object

Specifies the configuration for asynchronous inference invocation outputs.

Parameters:
  • kms_key_id (Optional[str]) – The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the asynchronous inference output in Amazon S3.

  • notification_config (Union[IResolvable, AsyncInferenceNotificationConfigProperty, Dict[str, Any], None]) – Specifies the configuration for notifications of inference results for asynchronous inference.

  • s3_failure_path (Optional[str]) – The Amazon S3 location to upload failure inference responses to.

  • s3_output_path (Optional[str]) – The Amazon S3 location to upload inference responses to.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferenceoutputconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

async_inference_output_config_property = sagemaker.CfnEndpointConfig.AsyncInferenceOutputConfigProperty(
    kms_key_id="kmsKeyId",
    notification_config=sagemaker.CfnEndpointConfig.AsyncInferenceNotificationConfigProperty(
        error_topic="errorTopic",
        include_inference_response_in=["includeInferenceResponseIn"],
        success_topic="successTopic"
    ),
    s3_failure_path="s3FailurePath",
    s3_output_path="s3OutputPath"
)

Attributes

kms_key_id

The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the asynchronous inference output in Amazon S3.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferenceoutputconfig.html#cfn-sagemaker-endpointconfig-asyncinferenceoutputconfig-kmskeyid

notification_config

Specifies the configuration for notifications of inference results for asynchronous inference.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferenceoutputconfig.html#cfn-sagemaker-endpointconfig-asyncinferenceoutputconfig-notificationconfig

s3_failure_path

The Amazon S3 location to upload failure inference responses to.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferenceoutputconfig.html#cfn-sagemaker-endpointconfig-asyncinferenceoutputconfig-s3failurepath

s3_output_path

The Amazon S3 location to upload inference responses to.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-asyncinferenceoutputconfig.html#cfn-sagemaker-endpointconfig-asyncinferenceoutputconfig-s3outputpath

CaptureContentTypeHeaderProperty

class CfnEndpointConfig.CaptureContentTypeHeaderProperty(*, csv_content_types=None, json_content_types=None)

Bases: object

Specifies the JSON and CSV content types of the data that the endpoint captures.

Parameters:
  • csv_content_types (Optional[Sequence[str]]) – A list of the CSV content types of the data that the endpoint captures. For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.

  • json_content_types (Optional[Sequence[str]]) – A list of the JSON content types of the data that the endpoint captures. For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-capturecontenttypeheader.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

capture_content_type_header_property = sagemaker.CfnEndpointConfig.CaptureContentTypeHeaderProperty(
    csv_content_types=["csvContentTypes"],
    json_content_types=["jsonContentTypes"]
)

Attributes

csv_content_types

A list of the CSV content types of the data that the endpoint captures.

For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-capturecontenttypeheader.html#cfn-sagemaker-endpointconfig-capturecontenttypeheader-csvcontenttypes

json_content_types

A list of the JSON content types of the data that the endpoint captures.

For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-capturecontenttypeheader.html#cfn-sagemaker-endpointconfig-capturecontenttypeheader-jsoncontenttypes

CaptureOptionProperty

class CfnEndpointConfig.CaptureOptionProperty(*, capture_mode)

Bases: object

Specifies whether the endpoint captures input data or output data.

Parameters:

capture_mode (str) – Specifies whether the endpoint captures input data or output data.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-captureoption.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

capture_option_property = sagemaker.CfnEndpointConfig.CaptureOptionProperty(
    capture_mode="captureMode"
)

Attributes

capture_mode

Specifies whether the endpoint captures input data or output data.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-captureoption.html#cfn-sagemaker-endpointconfig-captureoption-capturemode

ClarifyExplainerConfigProperty

class CfnEndpointConfig.ClarifyExplainerConfigProperty(*, shap_config, enable_explanations=None, inference_config=None)

Bases: object

The configuration parameters for the SageMaker Clarify explainer.

Parameters:
See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyexplainerconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

clarify_explainer_config_property = sagemaker.CfnEndpointConfig.ClarifyExplainerConfigProperty(
    shap_config=sagemaker.CfnEndpointConfig.ClarifyShapConfigProperty(
        shap_baseline_config=sagemaker.CfnEndpointConfig.ClarifyShapBaselineConfigProperty(
            mime_type="mimeType",
            shap_baseline="shapBaseline",
            shap_baseline_uri="shapBaselineUri"
        ),

        # the properties below are optional
        number_of_samples=123,
        seed=123,
        text_config=sagemaker.CfnEndpointConfig.ClarifyTextConfigProperty(
            granularity="granularity",
            language="language"
        ),
        use_logit=False
    ),

    # the properties below are optional
    enable_explanations="enableExplanations",
    inference_config=sagemaker.CfnEndpointConfig.ClarifyInferenceConfigProperty(
        content_template="contentTemplate",
        feature_headers=["featureHeaders"],
        features_attribute="featuresAttribute",
        feature_types=["featureTypes"],
        label_attribute="labelAttribute",
        label_headers=["labelHeaders"],
        label_index=123,
        max_payload_in_mb=123,
        max_record_count=123,
        probability_attribute="probabilityAttribute",
        probability_index=123
    )
)

Attributes

enable_explanations

A JMESPath boolean expression used to filter which records to explain.

Explanations are activated by default. See `EnableExplanations <https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable>`_ for additional information.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyexplainerconfig.html#cfn-sagemaker-endpointconfig-clarifyexplainerconfig-enableexplanations

inference_config

The inference configuration parameter for the model container.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyexplainerconfig.html#cfn-sagemaker-endpointconfig-clarifyexplainerconfig-inferenceconfig

shap_config

The configuration for SHAP analysis.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyexplainerconfig.html#cfn-sagemaker-endpointconfig-clarifyexplainerconfig-shapconfig

ClarifyInferenceConfigProperty

class CfnEndpointConfig.ClarifyInferenceConfigProperty(*, content_template=None, feature_headers=None, features_attribute=None, feature_types=None, label_attribute=None, label_headers=None, label_index=None, max_payload_in_mb=None, max_record_count=None, probability_attribute=None, probability_index=None)

Bases: object

The inference configuration parameter for the model container.

Parameters:
  • content_template (Optional[str]) – A template string used to format a JSON record into an acceptable model container input. For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.

  • feature_headers (Optional[Sequence[str]]) – The names of the features. If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.

  • features_attribute (Optional[str]) – Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .

  • feature_types (Optional[Sequence[str]]) –

    A list of data types of the features (optional). Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.

  • label_attribute (Optional[str]) – A JMESPath expression used to locate the list of label headers in the model container output. Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]

  • label_headers (Optional[Sequence[str]]) –

    For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.

  • label_index (Union[int, float, None]) – A zero-based index used to extract a label header or list of label headers from model container output in CSV format. Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .

  • max_payload_in_mb (Union[int, float, None]) – The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to 6 MB.

  • max_record_count (Union[int, float, None]) – The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset . A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container’s capacity at runtime.

  • probability_attribute (Optional[str]) – A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format. Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .

  • probability_index (Union[int, float, None]) – A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list. Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 . Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

clarify_inference_config_property = sagemaker.CfnEndpointConfig.ClarifyInferenceConfigProperty(
    content_template="contentTemplate",
    feature_headers=["featureHeaders"],
    features_attribute="featuresAttribute",
    feature_types=["featureTypes"],
    label_attribute="labelAttribute",
    label_headers=["labelHeaders"],
    label_index=123,
    max_payload_in_mb=123,
    max_record_count=123,
    probability_attribute="probabilityAttribute",
    probability_index=123
)

Attributes

content_template

A template string used to format a JSON record into an acceptable model container input.

For example, a ContentTemplate string '{"myfeatures":$features}' will format a list of features [1,2,3] into the record string '{"myfeatures":[1,2,3]}' . Required only when the model container input is in JSON Lines format.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-contenttemplate

feature_headers

The names of the features.

If provided, these are included in the endpoint response payload to help readability of the InvokeEndpoint output. See the Response section under Invoke the endpoint in the Developer Guide for more information.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-featureheaders

feature_types

A list of data types of the features (optional).

Applicable only to NLP explainability. If provided, FeatureTypes must have at least one 'text' string (for example, ['text'] ). If FeatureTypes is not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-featuretypes

features_attribute

Provides the JMESPath expression to extract the features from a model container input in JSON Lines format.

For example, if FeaturesAttribute is the JMESPath expression 'myfeatures' , it extracts a list of features [1,2,3] from request data '{"myfeatures":[1,2,3]}' .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-featuresattribute

label_attribute

A JMESPath expression used to locate the list of label headers in the model container output.

Example : If the model container output of a batch request is '{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}' , then set LabelAttribute to 'labels' to extract the list of label headers ["cat","dog","fish"]

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-labelattribute

label_headers

For multiclass classification problems, the label headers are the names of the classes.

Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the InvokeEndpoint API. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-labelheaders

label_index

A zero-based index used to extract a label header or list of label headers from model container output in CSV format.

Example for a multiclass model: If the model container output consists of label headers followed by probabilities: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set LabelIndex to 0 to select the label headers ['cat','dog','fish'] .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-labelindex

max_payload_in_mb

The maximum payload size (MB) allowed of a request from the explainer to the model container.

Defaults to 6 MB.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-maxpayloadinmb

max_record_count

//docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-synthetic>`_ . A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If MaxRecordCount is 1 , the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container’s capacity at runtime.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-maxrecordcount

Type:

The maximum number of records in a request that the model container can process when querying the model container for the predictions of a `synthetic dataset <https

probability_attribute

A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.

Example : If the model container output of a single request is '{"predicted_label":1,"probability":0.6}' , then set ProbabilityAttribute to 'probability' .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-probabilityattribute

probability_index

A zero-based index used to extract a probability value (score) or list from model container output in CSV format.

If this value is not provided, the entire model container output will be treated as a probability value (score) or list.

Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability: '1,0.6' , set ProbabilityIndex to 1 to select the probability value 0.6 .

Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability: '"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"' , set ProbabilityIndex to 1 to select the probability values [0.1,0.6,0.3] .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyinferenceconfig.html#cfn-sagemaker-endpointconfig-clarifyinferenceconfig-probabilityindex

ClarifyShapBaselineConfigProperty

class CfnEndpointConfig.ClarifyShapBaselineConfigProperty(*, mime_type=None, shap_baseline=None, shap_baseline_uri=None)

Bases: object

The configuration for the SHAP baseline (also called the background or reference dataset) of the Kernal SHAP algorithm.

  • The number of records in the baseline data determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint .

  • ShapBaseline and ShapBaselineUri are mutually exclusive parameters. One or the either is required to configure a SHAP baseline.

Parameters:
  • mime_type (Optional[str]) – The MIME type of the baseline data. Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .

  • shap_baseline (Optional[str]) – The inline SHAP baseline data in string format. ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.

  • shap_baseline_uri (Optional[str]) – The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyshapbaselineconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

clarify_shap_baseline_config_property = sagemaker.CfnEndpointConfig.ClarifyShapBaselineConfigProperty(
    mime_type="mimeType",
    shap_baseline="shapBaseline",
    shap_baseline_uri="shapBaselineUri"
)

Attributes

mime_type

The MIME type of the baseline data.

Choose from 'text/csv' or 'application/jsonlines' . Defaults to 'text/csv' .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyshapbaselineconfig.html#cfn-sagemaker-endpointconfig-clarifyshapbaselineconfig-mimetype

shap_baseline

The inline SHAP baseline data in string format.

ShapBaseline can have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by the Granularity of the TextConfig parameter. The size limit for ShapBasline is 4 KB. Use the ShapBaselineUri parameter if you want to provide more than 4 KB of baseline data.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyshapbaselineconfig.html#cfn-sagemaker-endpointconfig-clarifyshapbaselineconfig-shapbaseline

shap_baseline_uri

The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored.

The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the ShapBaselineUri should be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyshapbaselineconfig.html#cfn-sagemaker-endpointconfig-clarifyshapbaselineconfig-shapbaselineuri

ClarifyShapConfigProperty

class CfnEndpointConfig.ClarifyShapConfigProperty(*, shap_baseline_config, number_of_samples=None, seed=None, text_config=None, use_logit=None)

Bases: object

The configuration for SHAP analysis using SageMaker Clarify Explainer.

Parameters:
  • shap_baseline_config (Union[IResolvable, ClarifyShapBaselineConfigProperty, Dict[str, Any]]) – The configuration for the SHAP baseline of the Kernal SHAP algorithm.

  • number_of_samples (Union[int, float, None]) –

    The number of samples to be used for analysis by the Kernal SHAP algorithm. .. epigraph:: The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint .

  • seed (Union[int, float, None]) – The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.

  • text_config (Union[IResolvable, ClarifyTextConfigProperty, Dict[str, Any], None]) – A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.

  • use_logit (Union[bool, IResolvable, None]) – A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyshapconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

clarify_shap_config_property = sagemaker.CfnEndpointConfig.ClarifyShapConfigProperty(
    shap_baseline_config=sagemaker.CfnEndpointConfig.ClarifyShapBaselineConfigProperty(
        mime_type="mimeType",
        shap_baseline="shapBaseline",
        shap_baseline_uri="shapBaselineUri"
    ),

    # the properties below are optional
    number_of_samples=123,
    seed=123,
    text_config=sagemaker.CfnEndpointConfig.ClarifyTextConfigProperty(
        granularity="granularity",
        language="language"
    ),
    use_logit=False
)

Attributes

number_of_samples

The number of samples to be used for analysis by the Kernal SHAP algorithm.

The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyshapconfig.html#cfn-sagemaker-endpointconfig-clarifyshapconfig-numberofsamples

seed

The starting value used to initialize the random number generator in the explainer.

Provide a value for this parameter to obtain a deterministic SHAP result.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyshapconfig.html#cfn-sagemaker-endpointconfig-clarifyshapconfig-seed

shap_baseline_config

The configuration for the SHAP baseline of the Kernal SHAP algorithm.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyshapconfig.html#cfn-sagemaker-endpointconfig-clarifyshapconfig-shapbaselineconfig

text_config

A parameter that indicates if text features are treated as text and explanations are provided for individual units of text.

Required for natural language processing (NLP) explainability only.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyshapconfig.html#cfn-sagemaker-endpointconfig-clarifyshapconfig-textconfig

use_logit

A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions.

Defaults to false.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifyshapconfig.html#cfn-sagemaker-endpointconfig-clarifyshapconfig-uselogit

ClarifyTextConfigProperty

class CfnEndpointConfig.ClarifyTextConfigProperty(*, granularity, language)

Bases: object

A parameter used to configure the SageMaker Clarify explainer to treat text features as text so that explanations are provided for individual units of text.

Required only for natural language processing (NLP) explainability.

Parameters:
  • granularity (str) – The unit of granularity for the analysis of text features. For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.

  • language (str) – Specifies the language of the text features in [ISO 639-1](https://docs.aws.amazon.com/ https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) or ISO 639-3 code of a supported language. .. epigraph:: For a mix of multiple languages, use code 'xx' .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifytextconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

clarify_text_config_property = sagemaker.CfnEndpointConfig.ClarifyTextConfigProperty(
    granularity="granularity",
    language="language"
)

Attributes

granularity

The unit of granularity for the analysis of text features.

For example, if the unit is 'token' , then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifytextconfig.html#cfn-sagemaker-endpointconfig-clarifytextconfig-granularity

language

//en.wikipedia.org/wiki/List_of_ISO_639-1_codes) or ISO 639-3 code of a supported language.

For a mix of multiple languages, use code 'xx' .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-clarifytextconfig.html#cfn-sagemaker-endpointconfig-clarifytextconfig-language

Type:

Specifies the language of the text features in [ISO 639-1](https

Type:

//docs.aws.amazon.com/ https

DataCaptureConfigProperty

class CfnEndpointConfig.DataCaptureConfigProperty(*, capture_options, destination_s3_uri, initial_sampling_percentage, capture_content_type_header=None, enable_capture=None, kms_key_id=None)

Bases: object

Specifies the configuration of your endpoint for model monitor data capture.

Parameters:
  • capture_options (Union[IResolvable, Sequence[Union[IResolvable, CaptureOptionProperty, Dict[str, Any]]]]) – Specifies whether the endpoint captures input data to your model, output data from your model, or both.

  • destination_s3_uri (str) – The S3 bucket where model monitor stores captured data.

  • initial_sampling_percentage (Union[int, float]) – The percentage of data to capture.

  • capture_content_type_header (Union[IResolvable, CaptureContentTypeHeaderProperty, Dict[str, Any], None]) – A list of the JSON and CSV content type that the endpoint captures.

  • enable_capture (Union[bool, IResolvable, None]) – Set to True to enable data capture.

  • kms_key_id (Optional[str]) – The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateModel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html) request. For more information, see Using Key Policies in AWS KMS (http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) in the AWS Key Management Service Developer Guide.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-datacaptureconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

data_capture_config_property = sagemaker.CfnEndpointConfig.DataCaptureConfigProperty(
    capture_options=[sagemaker.CfnEndpointConfig.CaptureOptionProperty(
        capture_mode="captureMode"
    )],
    destination_s3_uri="destinationS3Uri",
    initial_sampling_percentage=123,

    # the properties below are optional
    capture_content_type_header=sagemaker.CfnEndpointConfig.CaptureContentTypeHeaderProperty(
        csv_content_types=["csvContentTypes"],
        json_content_types=["jsonContentTypes"]
    ),
    enable_capture=False,
    kms_key_id="kmsKeyId"
)

Attributes

capture_content_type_header

A list of the JSON and CSV content type that the endpoint captures.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-datacaptureconfig.html#cfn-sagemaker-endpointconfig-datacaptureconfig-capturecontenttypeheader

capture_options

Specifies whether the endpoint captures input data to your model, output data from your model, or both.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-datacaptureconfig.html#cfn-sagemaker-endpointconfig-datacaptureconfig-captureoptions

destination_s3_uri

The S3 bucket where model monitor stores captured data.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-datacaptureconfig.html#cfn-sagemaker-endpointconfig-datacaptureconfig-destinations3uri

enable_capture

Set to True to enable data capture.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-datacaptureconfig.html#cfn-sagemaker-endpointconfig-datacaptureconfig-enablecapture

initial_sampling_percentage

The percentage of data to capture.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-datacaptureconfig.html#cfn-sagemaker-endpointconfig-datacaptureconfig-initialsamplingpercentage

kms_key_id

The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption.

The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateModel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html) request. For more information, see Using Key Policies in AWS KMS (http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) in the AWS Key Management Service Developer Guide.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-datacaptureconfig.html#cfn-sagemaker-endpointconfig-datacaptureconfig-kmskeyid

ExplainerConfigProperty

class CfnEndpointConfig.ExplainerConfigProperty(*, clarify_explainer_config=None)

Bases: object

A parameter to activate explainers.

Parameters:

clarify_explainer_config (Union[IResolvable, ClarifyExplainerConfigProperty, Dict[str, Any], None]) – A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-explainerconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

explainer_config_property = sagemaker.CfnEndpointConfig.ExplainerConfigProperty(
    clarify_explainer_config=sagemaker.CfnEndpointConfig.ClarifyExplainerConfigProperty(
        shap_config=sagemaker.CfnEndpointConfig.ClarifyShapConfigProperty(
            shap_baseline_config=sagemaker.CfnEndpointConfig.ClarifyShapBaselineConfigProperty(
                mime_type="mimeType",
                shap_baseline="shapBaseline",
                shap_baseline_uri="shapBaselineUri"
            ),

            # the properties below are optional
            number_of_samples=123,
            seed=123,
            text_config=sagemaker.CfnEndpointConfig.ClarifyTextConfigProperty(
                granularity="granularity",
                language="language"
            ),
            use_logit=False
        ),

        # the properties below are optional
        enable_explanations="enableExplanations",
        inference_config=sagemaker.CfnEndpointConfig.ClarifyInferenceConfigProperty(
            content_template="contentTemplate",
            feature_headers=["featureHeaders"],
            features_attribute="featuresAttribute",
            feature_types=["featureTypes"],
            label_attribute="labelAttribute",
            label_headers=["labelHeaders"],
            label_index=123,
            max_payload_in_mb=123,
            max_record_count=123,
            probability_attribute="probabilityAttribute",
            probability_index=123
        )
    )
)

Attributes

clarify_explainer_config

A member of ExplainerConfig that contains configuration parameters for the SageMaker Clarify explainer.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-explainerconfig.html#cfn-sagemaker-endpointconfig-explainerconfig-clarifyexplainerconfig

ManagedInstanceScalingProperty

class CfnEndpointConfig.ManagedInstanceScalingProperty(*, max_instance_count=None, min_instance_count=None, status=None)

Bases: object

Parameters:
  • max_instance_count (Union[int, float, None]) –

  • min_instance_count (Union[int, float, None]) –

  • status (Optional[str]) –

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-managedinstancescaling.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

managed_instance_scaling_property = sagemaker.CfnEndpointConfig.ManagedInstanceScalingProperty(
    max_instance_count=123,
    min_instance_count=123,
    status="status"
)

Attributes

max_instance_count

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-managedinstancescaling.html#cfn-sagemaker-endpointconfig-managedinstancescaling-maxinstancecount

Type:

see

min_instance_count

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-managedinstancescaling.html#cfn-sagemaker-endpointconfig-managedinstancescaling-mininstancecount

Type:

see

status

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-managedinstancescaling.html#cfn-sagemaker-endpointconfig-managedinstancescaling-status

Type:

see

ProductionVariantProperty

class CfnEndpointConfig.ProductionVariantProperty(*, variant_name, accelerator_type=None, container_startup_health_check_timeout_in_seconds=None, enable_ssm_access=None, initial_instance_count=None, initial_variant_weight=None, instance_type=None, managed_instance_scaling=None, model_data_download_timeout_in_seconds=None, model_name=None, routing_config=None, serverless_config=None, volume_size_in_gb=None)

Bases: object

Specifies a model that you want to host and the resources to deploy for hosting it.

If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying the InitialVariantWeight objects.

Parameters:
  • variant_name (str) – The name of the production variant.

  • accelerator_type (Optional[str]) –

    The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker . For more information, see Using Elastic Inference in Amazon SageMaker .

  • container_startup_health_check_timeout_in_seconds (Union[int, float, None]) – The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests .

  • enable_ssm_access (Union[bool, IResolvable, None]) – You can use this parameter to turn on native AWS Systems Manager (SSM) access for a production variant behind an endpoint. By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling UpdateEndpoint .

  • initial_instance_count (Union[int, float, None]) – Number of instances to launch initially.

  • initial_variant_weight (Union[int, float, None]) – Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

  • instance_type (Optional[str]) – The ML compute instance type.

  • managed_instance_scaling (Union[IResolvable, ManagedInstanceScalingProperty, Dict[str, Any], None]) –

  • model_data_download_timeout_in_seconds (Union[int, float, None]) – The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

  • model_name (Optional[str]) – The name of the model that you want to host. This is the name that you specified when creating the model.

  • routing_config (Union[IResolvable, RoutingConfigProperty, Dict[str, Any], None]) –

  • serverless_config (Union[IResolvable, ServerlessConfigProperty, Dict[str, Any], None]) – The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

  • volume_size_in_gb (Union[int, float, None]) – The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

production_variant_property = sagemaker.CfnEndpointConfig.ProductionVariantProperty(
    variant_name="variantName",

    # the properties below are optional
    accelerator_type="acceleratorType",
    container_startup_health_check_timeout_in_seconds=123,
    enable_ssm_access=False,
    initial_instance_count=123,
    initial_variant_weight=123,
    instance_type="instanceType",
    managed_instance_scaling=sagemaker.CfnEndpointConfig.ManagedInstanceScalingProperty(
        max_instance_count=123,
        min_instance_count=123,
        status="status"
    ),
    model_data_download_timeout_in_seconds=123,
    model_name="modelName",
    routing_config=sagemaker.CfnEndpointConfig.RoutingConfigProperty(
        routing_strategy="routingStrategy"
    ),
    serverless_config=sagemaker.CfnEndpointConfig.ServerlessConfigProperty(
        max_concurrency=123,
        memory_size_in_mb=123,

        # the properties below are optional
        provisioned_concurrency=123
    ),
    volume_size_in_gb=123
)

Attributes

accelerator_type

The size of the Elastic Inference (EI) instance to use for the production variant.

EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker . For more information, see Using Elastic Inference in Amazon SageMaker .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-acceleratortype

container_startup_health_check_timeout_in_seconds

The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting.

For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-containerstartuphealthchecktimeoutinseconds

enable_ssm_access

You can use this parameter to turn on native AWS Systems Manager (SSM) access for a production variant behind an endpoint.

By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling UpdateEndpoint .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-enablessmaccess

initial_instance_count

Number of instances to launch initially.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-initialinstancecount

initial_variant_weight

Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.

The traffic to a production variant is determined by the ratio of the VariantWeight to the sum of all VariantWeight values across all ProductionVariants. If unspecified, it defaults to 1.0.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-initialvariantweight

instance_type

The ML compute instance type.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-instancetype

managed_instance_scaling

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-managedinstancescaling

Type:

see

model_data_download_timeout_in_seconds

The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-modeldatadownloadtimeoutinseconds

model_name

The name of the model that you want to host.

This is the name that you specified when creating the model.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-modelname

routing_config

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-routingconfig

Type:

see

serverless_config

The serverless configuration for an endpoint.

Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-serverlessconfig

variant_name

The name of the production variant.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-variantname

volume_size_in_gb

The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant.

Currently only Amazon EBS gp2 storage volumes are supported.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-productionvariant.html#cfn-sagemaker-endpointconfig-productionvariant-volumesizeingb

RoutingConfigProperty

class CfnEndpointConfig.RoutingConfigProperty(*, routing_strategy=None)

Bases: object

Parameters:

routing_strategy (Optional[str]) –

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-routingconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

routing_config_property = sagemaker.CfnEndpointConfig.RoutingConfigProperty(
    routing_strategy="routingStrategy"
)

Attributes

routing_strategy

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-routingconfig.html#cfn-sagemaker-endpointconfig-routingconfig-routingstrategy

Type:

see

ServerlessConfigProperty

class CfnEndpointConfig.ServerlessConfigProperty(*, max_concurrency, memory_size_in_mb, provisioned_concurrency=None)

Bases: object

Specifies the serverless configuration for an endpoint variant.

Parameters:
  • max_concurrency (Union[int, float]) – The maximum number of concurrent invocations your serverless endpoint can process.

  • memory_size_in_mb (Union[int, float]) – The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

  • provisioned_concurrency (Union[int, float, None]) – The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal to MaxConcurrency . .. epigraph:: This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs .

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-serverlessconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

serverless_config_property = sagemaker.CfnEndpointConfig.ServerlessConfigProperty(
    max_concurrency=123,
    memory_size_in_mb=123,

    # the properties below are optional
    provisioned_concurrency=123
)

Attributes

max_concurrency

The maximum number of concurrent invocations your serverless endpoint can process.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-serverlessconfig.html#cfn-sagemaker-endpointconfig-serverlessconfig-maxconcurrency

memory_size_in_mb

The memory size of your serverless endpoint.

Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-serverlessconfig.html#cfn-sagemaker-endpointconfig-serverlessconfig-memorysizeinmb

provisioned_concurrency

The amount of provisioned concurrency to allocate for the serverless endpoint.

Should be less than or equal to MaxConcurrency . .. epigraph:

This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see `CreateInferenceRecommendationsJobs <https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html>`_ .
See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-serverlessconfig.html#cfn-sagemaker-endpointconfig-serverlessconfig-provisionedconcurrency

VpcConfigProperty

class CfnEndpointConfig.VpcConfigProperty(*, security_group_ids, subnets)

Bases: object

Parameters:
  • security_group_ids (Sequence[str]) –

  • subnets (Sequence[str]) –

See:

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-vpcconfig.html

ExampleMetadata:

fixture=_generated

Example:

# The code below shows an example of how to instantiate this type.
# The values are placeholders you should change.
from aws_cdk import aws_sagemaker as sagemaker

vpc_config_property = sagemaker.CfnEndpointConfig.VpcConfigProperty(
    security_group_ids=["securityGroupIds"],
    subnets=["subnets"]
)

Attributes

security_group_ids

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-vpcconfig.html#cfn-sagemaker-endpointconfig-vpcconfig-securitygroupids

Type:

see

subnets

http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-sagemaker-endpointconfig-vpcconfig.html#cfn-sagemaker-endpointconfig-vpcconfig-subnets

Type:

see