CfnUserProfile
- class aws_cdk.aws_sagemaker.CfnUserProfile(scope, id, *, domain_id, user_profile_name, single_sign_on_user_identifier=None, single_sign_on_user_value=None, tags=None, user_settings=None)
Bases:
CfnResource
Creates a user profile.
A user profile represents a single user within a domain, and is the main way to reference a “person” for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from IAM Identity Center , a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user’s private Amazon Elastic File System (EFS) home directory. .. epigraph:
If you're using IAM Identity Center authentication, a user in IAM Identity Center , or a group in IAM Identity Center containing that user, must be assigned to the Amazon SageMaker Studio application from the IAM Identity Center Console to create a user profile. For more information about application assignment, see `Assign user access <https://docs.aws.amazon.com/singlesignon/latest/userguide/assignuserstoapp.html>`_ . After assignment is complete, a user profile can be created for that user in IAM Identity Center with AWS CloudFormation.
- See:
- CloudformationResource:
AWS::SageMaker::UserProfile
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker cfn_user_profile = sagemaker.CfnUserProfile(self, "MyCfnUserProfile", domain_id="domainId", user_profile_name="userProfileName", # the properties below are optional single_sign_on_user_identifier="singleSignOnUserIdentifier", single_sign_on_user_value="singleSignOnUserValue", tags=[CfnTag( key="key", value="value" )], user_settings=sagemaker.CfnUserProfile.UserSettingsProperty( code_editor_app_settings=sagemaker.CfnUserProfile.CodeEditorAppSettingsProperty( app_lifecycle_management=sagemaker.CfnUserProfile.AppLifecycleManagementProperty( idle_settings=sagemaker.CfnUserProfile.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), custom_images=[sagemaker.CfnUserProfile.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", # the properties below are optional image_version_number=123 )], default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), custom_file_system_configs=[sagemaker.CfnUserProfile.CustomFileSystemConfigProperty( efs_file_system_config=sagemaker.CfnUserProfile.EFSFileSystemConfigProperty( file_system_id="fileSystemId", # the properties below are optional file_system_path="fileSystemPath" ) )], custom_posix_user_config=sagemaker.CfnUserProfile.CustomPosixUserConfigProperty( gid=123, uid=123 ), default_landing_uri="defaultLandingUri", execution_role="executionRole", jupyter_lab_app_settings=sagemaker.CfnUserProfile.JupyterLabAppSettingsProperty( app_lifecycle_management=sagemaker.CfnUserProfile.AppLifecycleManagementProperty( idle_settings=sagemaker.CfnUserProfile.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), code_repositories=[sagemaker.CfnUserProfile.CodeRepositoryProperty( repository_url="repositoryUrl" )], custom_images=[sagemaker.CfnUserProfile.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", # the properties below are optional image_version_number=123 )], default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), jupyter_server_app_settings=sagemaker.CfnUserProfile.JupyterServerAppSettingsProperty( default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), kernel_gateway_app_settings=sagemaker.CfnUserProfile.KernelGatewayAppSettingsProperty( custom_images=[sagemaker.CfnUserProfile.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", # the properties below are optional image_version_number=123 )], default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), r_studio_server_pro_app_settings=sagemaker.CfnUserProfile.RStudioServerProAppSettingsProperty( access_status="accessStatus", user_group="userGroup" ), security_groups=["securityGroups"], sharing_settings=sagemaker.CfnUserProfile.SharingSettingsProperty( notebook_output_option="notebookOutputOption", s3_kms_key_id="s3KmsKeyId", s3_output_path="s3OutputPath" ), space_storage_settings=sagemaker.CfnUserProfile.DefaultSpaceStorageSettingsProperty( default_ebs_storage_settings=sagemaker.CfnUserProfile.DefaultEbsStorageSettingsProperty( default_ebs_volume_size_in_gb=123, maximum_ebs_volume_size_in_gb=123 ) ), studio_web_portal="studioWebPortal", studio_web_portal_settings=sagemaker.CfnUserProfile.StudioWebPortalSettingsProperty( hidden_app_types=["hiddenAppTypes"], hidden_ml_tools=["hiddenMlTools"] ) ) )
- Parameters:
scope (
Construct
) – Scope in which this resource is defined.id (
str
) – Construct identifier for this resource (unique in its scope).domain_id (
str
) – The domain ID.user_profile_name (
str
) – The user profile name.single_sign_on_user_identifier (
Optional
[str
]) – A specifier for the type of value specified in SingleSignOnUserValue. Currently, the only supported value is “UserName”. If the Domain’s AuthMode is IAM Identity Center , this field is required. If the Domain’s AuthMode is not IAM Identity Center , this field cannot be specified.single_sign_on_user_value (
Optional
[str
]) – The username of the associated AWS Single Sign-On User for this UserProfile. If the Domain’s AuthMode is IAM Identity Center , this field is required, and must match a valid username of a user in your directory. If the Domain’s AuthMode is not IAM Identity Center , this field cannot be specified.tags (
Optional
[Sequence
[Union
[CfnTag
,Dict
[str
,Any
]]]]) – An array of key-value pairs to apply to this resource. Tags that you specify for the User Profile are also added to all apps that the User Profile launches. For more information, see Tag .user_settings (
Union
[IResolvable
,UserSettingsProperty
,Dict
[str
,Any
],None
]) – A collection of settings that apply to users of Amazon SageMaker Studio.
Methods
- add_deletion_override(path)
Syntactic sugar for
addOverride(path, undefined)
.- Parameters:
path (
str
) – The path of the value to delete.- Return type:
None
- add_dependency(target)
Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.
This can be used for resources across stacks (or nested stack) boundaries and the dependency will automatically be transferred to the relevant scope.
- Parameters:
target (
CfnResource
) –- Return type:
None
- add_depends_on(target)
(deprecated) Indicates that this resource depends on another resource and cannot be provisioned unless the other resource has been successfully provisioned.
- Parameters:
target (
CfnResource
) –- Deprecated:
use addDependency
- Stability:
deprecated
- Return type:
None
- add_metadata(key, value)
Add a value to the CloudFormation Resource Metadata.
- Parameters:
key (
str
) –value (
Any
) –
- See:
- Return type:
None
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- add_override(path, value)
Adds an override to the synthesized CloudFormation resource.
To add a property override, either use
addPropertyOverride
or prefixpath
with “Properties.” (i.e.Properties.TopicName
).If the override is nested, separate each nested level using a dot (.) in the path parameter. If there is an array as part of the nesting, specify the index in the path.
To include a literal
.
in the property name, prefix with a\
. In most programming languages you will need to write this as"\\."
because the\
itself will need to be escaped.For example:
cfn_resource.add_override("Properties.GlobalSecondaryIndexes.0.Projection.NonKeyAttributes", ["myattribute"]) cfn_resource.add_override("Properties.GlobalSecondaryIndexes.1.ProjectionType", "INCLUDE")
would add the overrides Example:
"Properties": { "GlobalSecondaryIndexes": [ { "Projection": { "NonKeyAttributes": [ "myattribute" ] ... } ... }, { "ProjectionType": "INCLUDE" ... }, ] ... }
The
value
argument toaddOverride
will not be processed or translated in any way. Pass raw JSON values in here with the correct capitalization for CloudFormation. If you pass CDK classes or structs, they will be rendered with lowercased key names, and CloudFormation will reject the template.- Parameters:
path (
str
) –The path of the property, you can use dot notation to override values in complex types. Any intermediate keys will be created as needed.
value (
Any
) –The value. Could be primitive or complex.
- Return type:
None
- add_property_deletion_override(property_path)
Adds an override that deletes the value of a property from the resource definition.
- Parameters:
property_path (
str
) – The path to the property.- Return type:
None
- add_property_override(property_path, value)
Adds an override to a resource property.
Syntactic sugar for
addOverride("Properties.<...>", value)
.- Parameters:
property_path (
str
) – The path of the property.value (
Any
) – The value.
- Return type:
None
- apply_removal_policy(policy=None, *, apply_to_update_replace_policy=None, default=None)
Sets the deletion policy of the resource based on the removal policy specified.
The Removal Policy controls what happens to this resource when it stops being managed by CloudFormation, either because you’ve removed it from the CDK application or because you’ve made a change that requires the resource to be replaced.
The resource can be deleted (
RemovalPolicy.DESTROY
), or left in your AWS account for data recovery and cleanup later (RemovalPolicy.RETAIN
). In some cases, a snapshot can be taken of the resource prior to deletion (RemovalPolicy.SNAPSHOT
). A list of resources that support this policy can be found in the following link:- Parameters:
policy (
Optional
[RemovalPolicy
]) –apply_to_update_replace_policy (
Optional
[bool
]) – Apply the same deletion policy to the resource’s “UpdateReplacePolicy”. Default: truedefault (
Optional
[RemovalPolicy
]) – The default policy to apply in case the removal policy is not defined. Default: - Default value is resource specific. To determine the default value for a resource, please consult that specific resource’s documentation.
- See:
- Return type:
None
- get_att(attribute_name, type_hint=None)
Returns a token for an runtime attribute of this resource.
Ideally, use generated attribute accessors (e.g.
resource.arn
), but this can be used for future compatibility in case there is no generated attribute.- Parameters:
attribute_name (
str
) – The name of the attribute.type_hint (
Optional
[ResolutionTypeHint
]) –
- Return type:
- get_metadata(key)
Retrieve a value value from the CloudFormation Resource Metadata.
- Parameters:
key (
str
) –- See:
- Return type:
Any
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/metadata-section-structure.html
Note that this is a different set of metadata from CDK node metadata; this metadata ends up in the stack template under the resource, whereas CDK node metadata ends up in the Cloud Assembly.
- inspect(inspector)
Examines the CloudFormation resource and discloses attributes.
- Parameters:
inspector (
TreeInspector
) – tree inspector to collect and process attributes.- Return type:
None
- obtain_dependencies()
Retrieves an array of resources this resource depends on.
This assembles dependencies on resources across stacks (including nested stacks) automatically.
- Return type:
List
[Union
[Stack
,CfnResource
]]
- obtain_resource_dependencies()
Get a shallow copy of dependencies between this resource and other resources in the same stack.
- Return type:
List
[CfnResource
]
- override_logical_id(new_logical_id)
Overrides the auto-generated logical ID with a specific ID.
- Parameters:
new_logical_id (
str
) – The new logical ID to use for this stack element.- Return type:
None
- remove_dependency(target)
Indicates that this resource no longer depends on another resource.
This can be used for resources across stacks (including nested stacks) and the dependency will automatically be removed from the relevant scope.
- Parameters:
target (
CfnResource
) –- Return type:
None
- replace_dependency(target, new_target)
Replaces one dependency with another.
- Parameters:
target (
CfnResource
) – The dependency to replace.new_target (
CfnResource
) – The new dependency to add.
- Return type:
None
- to_string()
Returns a string representation of this construct.
- Return type:
str
- Returns:
a string representation of this resource
Attributes
- CFN_RESOURCE_TYPE_NAME = 'AWS::SageMaker::UserProfile'
- attr_user_profile_arn
The Amazon Resource Name (ARN) of the user profile, such as
arn:aws:sagemaker:region:account-id:user-profile/domain-id/user-profile-name
.- CloudformationAttribute:
UserProfileArn
- cfn_options
Options for this resource, such as condition, update policy etc.
- cfn_resource_type
AWS resource type.
- creation_stack
return:
the stack trace of the point where this Resource was created from, sourced from the +metadata+ entry typed +aws:cdk:logicalId+, and with the bottom-most node +internal+ entries filtered.
- domain_id
The domain ID.
- logical_id
The logical ID for this CloudFormation stack element.
The logical ID of the element is calculated from the path of the resource node in the construct tree.
To override this value, use
overrideLogicalId(newLogicalId)
.- Returns:
the logical ID as a stringified token. This value will only get resolved during synthesis.
- node
The tree node.
- ref
Return a string that will be resolved to a CloudFormation
{ Ref }
for this element.If, by any chance, the intrinsic reference of a resource is not a string, you could coerce it to an IResolvable through
Lazy.any({ produce: resource.ref })
.
- single_sign_on_user_identifier
A specifier for the type of value specified in SingleSignOnUserValue.
- single_sign_on_user_value
The username of the associated AWS Single Sign-On User for this UserProfile.
- stack
The stack in which this element is defined.
CfnElements must be defined within a stack scope (directly or indirectly).
- tags
Tag Manager which manages the tags for this resource.
- tags_raw
An array of key-value pairs to apply to this resource.
- user_profile_name
The user profile name.
- user_settings
A collection of settings that apply to users of Amazon SageMaker Studio.
Static Methods
- classmethod is_cfn_element(x)
Returns
true
if a construct is a stack element (i.e. part of the synthesized cloudformation template).Uses duck-typing instead of
instanceof
to allow stack elements from different versions of this library to be included in the same stack.- Parameters:
x (
Any
) –- Return type:
bool
- Returns:
The construct as a stack element or undefined if it is not a stack element.
- classmethod is_cfn_resource(x)
Check whether the given object is a CfnResource.
- Parameters:
x (
Any
) –- Return type:
bool
- classmethod is_construct(x)
Checks if
x
is a construct.Use this method instead of
instanceof
to properly detectConstruct
instances, even when the construct library is symlinked.Explanation: in JavaScript, multiple copies of the
constructs
library on disk are seen as independent, completely different libraries. As a consequence, the classConstruct
in each copy of theconstructs
library is seen as a different class, and an instance of one class will not test asinstanceof
the other class.npm install
will not create installations like this, but users may manually symlink construct libraries together or use a monorepo tool: in those cases, multiple copies of theconstructs
library can be accidentally installed, andinstanceof
will behave unpredictably. It is safest to avoid usinginstanceof
, and using this type-testing method instead.- Parameters:
x (
Any
) – Any object.- Return type:
bool
- Returns:
true if
x
is an object created from a class which extendsConstruct
.
AppLifecycleManagementProperty
- class CfnUserProfile.AppLifecycleManagementProperty(*, idle_settings=None)
Bases:
object
Settings that are used to configure and manage the lifecycle of Amazon SageMaker Studio applications.
- Parameters:
idle_settings (
Union
[IResolvable
,IdleSettingsProperty
,Dict
[str
,Any
],None
]) – Settings related to idle shutdown of Studio applications.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker app_lifecycle_management_property = sagemaker.CfnUserProfile.AppLifecycleManagementProperty( idle_settings=sagemaker.CfnUserProfile.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) )
Attributes
- idle_settings
Settings related to idle shutdown of Studio applications.
CodeEditorAppSettingsProperty
- class CfnUserProfile.CodeEditorAppSettingsProperty(*, app_lifecycle_management=None, custom_images=None, default_resource_spec=None, lifecycle_config_arns=None)
Bases:
object
The Code Editor application settings.
For more information about Code Editor, see Get started with Code Editor in Amazon SageMaker .
- Parameters:
app_lifecycle_management (
Union
[IResolvable
,AppLifecycleManagementProperty
,Dict
[str
,Any
],None
]) – Settings that are used to configure and manage the lifecycle of CodeEditor applications.custom_images (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,CustomImageProperty
,Dict
[str
,Any
]]],None
]) – A list of custom SageMaker images that are configured to run as a Code Editor app.default_resource_spec (
Union
[IResolvable
,ResourceSpecProperty
,Dict
[str
,Any
],None
]) – The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the Code Editor app.lifecycle_config_arns (
Optional
[Sequence
[str
]]) – The Amazon Resource Name (ARN) of the Code Editor application lifecycle configuration.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker code_editor_app_settings_property = sagemaker.CfnUserProfile.CodeEditorAppSettingsProperty( app_lifecycle_management=sagemaker.CfnUserProfile.AppLifecycleManagementProperty( idle_settings=sagemaker.CfnUserProfile.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), custom_images=[sagemaker.CfnUserProfile.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", # the properties below are optional image_version_number=123 )], default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] )
Attributes
- app_lifecycle_management
Settings that are used to configure and manage the lifecycle of CodeEditor applications.
- custom_images
A list of custom SageMaker images that are configured to run as a Code Editor app.
- default_resource_spec
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the Code Editor app.
- lifecycle_config_arns
The Amazon Resource Name (ARN) of the Code Editor application lifecycle configuration.
CodeRepositoryProperty
- class CfnUserProfile.CodeRepositoryProperty(*, repository_url)
Bases:
object
A Git repository that SageMaker automatically displays to users for cloning in the JupyterServer application.
- Parameters:
repository_url (
str
) – The URL of the Git repository.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker code_repository_property = sagemaker.CfnUserProfile.CodeRepositoryProperty( repository_url="repositoryUrl" )
Attributes
- repository_url
The URL of the Git repository.
CustomFileSystemConfigProperty
- class CfnUserProfile.CustomFileSystemConfigProperty(*, efs_file_system_config=None)
Bases:
object
The settings for assigning a custom file system to a user profile or space for an Amazon SageMaker Domain.
Permitted users can access this file system in Amazon SageMaker Studio.
- Parameters:
efs_file_system_config (
Union
[IResolvable
,EFSFileSystemConfigProperty
,Dict
[str
,Any
],None
]) – The settings for a custom Amazon EFS file system.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker custom_file_system_config_property = sagemaker.CfnUserProfile.CustomFileSystemConfigProperty( efs_file_system_config=sagemaker.CfnUserProfile.EFSFileSystemConfigProperty( file_system_id="fileSystemId", # the properties below are optional file_system_path="fileSystemPath" ) )
Attributes
- efs_file_system_config
The settings for a custom Amazon EFS file system.
CustomImageProperty
- class CfnUserProfile.CustomImageProperty(*, app_image_config_name, image_name, image_version_number=None)
Bases:
object
A custom SageMaker image.
For more information, see Bring your own SageMaker image .
- Parameters:
app_image_config_name (
str
) – The name of the AppImageConfig.image_name (
str
) – The name of the CustomImage. Must be unique to your account.image_version_number (
Union
[int
,float
,None
]) – The version number of the CustomImage.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker custom_image_property = sagemaker.CfnUserProfile.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", # the properties below are optional image_version_number=123 )
Attributes
- app_image_config_name
The name of the AppImageConfig.
- image_name
The name of the CustomImage.
Must be unique to your account.
- image_version_number
The version number of the CustomImage.
CustomPosixUserConfigProperty
- class CfnUserProfile.CustomPosixUserConfigProperty(*, gid, uid)
Bases:
object
Details about the POSIX identity that is used for file system operations.
- Parameters:
gid (
Union
[int
,float
]) – The POSIX group ID.uid (
Union
[int
,float
]) – The POSIX user ID.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker custom_posix_user_config_property = sagemaker.CfnUserProfile.CustomPosixUserConfigProperty( gid=123, uid=123 )
Attributes
- gid
The POSIX group ID.
DefaultEbsStorageSettingsProperty
- class CfnUserProfile.DefaultEbsStorageSettingsProperty(*, default_ebs_volume_size_in_gb, maximum_ebs_volume_size_in_gb)
Bases:
object
A collection of default EBS storage settings that apply to spaces created within a domain or user profile.
- Parameters:
default_ebs_volume_size_in_gb (
Union
[int
,float
]) – The default size of the EBS storage volume for a space.maximum_ebs_volume_size_in_gb (
Union
[int
,float
]) – The maximum size of the EBS storage volume for a space.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker default_ebs_storage_settings_property = sagemaker.CfnUserProfile.DefaultEbsStorageSettingsProperty( default_ebs_volume_size_in_gb=123, maximum_ebs_volume_size_in_gb=123 )
Attributes
- default_ebs_volume_size_in_gb
The default size of the EBS storage volume for a space.
- maximum_ebs_volume_size_in_gb
The maximum size of the EBS storage volume for a space.
DefaultSpaceStorageSettingsProperty
- class CfnUserProfile.DefaultSpaceStorageSettingsProperty(*, default_ebs_storage_settings=None)
Bases:
object
The default storage settings for a space.
- Parameters:
default_ebs_storage_settings (
Union
[IResolvable
,DefaultEbsStorageSettingsProperty
,Dict
[str
,Any
],None
]) – The default EBS storage settings for a space.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker default_space_storage_settings_property = sagemaker.CfnUserProfile.DefaultSpaceStorageSettingsProperty( default_ebs_storage_settings=sagemaker.CfnUserProfile.DefaultEbsStorageSettingsProperty( default_ebs_volume_size_in_gb=123, maximum_ebs_volume_size_in_gb=123 ) )
Attributes
- default_ebs_storage_settings
The default EBS storage settings for a space.
EFSFileSystemConfigProperty
- class CfnUserProfile.EFSFileSystemConfigProperty(*, file_system_id, file_system_path=None)
Bases:
object
The settings for assigning a custom Amazon EFS file system to a user profile or space for an Amazon SageMaker Domain.
- Parameters:
file_system_id (
str
) – The ID of your Amazon EFS file system.file_system_path (
Optional
[str
]) – The path to the file system directory that is accessible in Amazon SageMaker Studio. Permitted users can access only this directory and below.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker e_fSFile_system_config_property = sagemaker.CfnUserProfile.EFSFileSystemConfigProperty( file_system_id="fileSystemId", # the properties below are optional file_system_path="fileSystemPath" )
Attributes
- file_system_id
The ID of your Amazon EFS file system.
- file_system_path
The path to the file system directory that is accessible in Amazon SageMaker Studio.
Permitted users can access only this directory and below.
IdleSettingsProperty
- class CfnUserProfile.IdleSettingsProperty(*, idle_timeout_in_minutes=None, lifecycle_management=None, max_idle_timeout_in_minutes=None, min_idle_timeout_in_minutes=None)
Bases:
object
Settings related to idle shutdown of Studio applications.
- Parameters:
idle_timeout_in_minutes (
Union
[int
,float
,None
]) – The time that SageMaker waits after the application becomes idle before shutting it down.lifecycle_management (
Optional
[str
]) – Indicates whether idle shutdown is activated for the application type.max_idle_timeout_in_minutes (
Union
[int
,float
,None
]) – The maximum value in minutes that custom idle shutdown can be set to by the user.min_idle_timeout_in_minutes (
Union
[int
,float
,None
]) – The minimum value in minutes that custom idle shutdown can be set to by the user.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker idle_settings_property = sagemaker.CfnUserProfile.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 )
Attributes
- idle_timeout_in_minutes
The time that SageMaker waits after the application becomes idle before shutting it down.
- lifecycle_management
Indicates whether idle shutdown is activated for the application type.
- max_idle_timeout_in_minutes
The maximum value in minutes that custom idle shutdown can be set to by the user.
- min_idle_timeout_in_minutes
The minimum value in minutes that custom idle shutdown can be set to by the user.
JupyterLabAppSettingsProperty
- class CfnUserProfile.JupyterLabAppSettingsProperty(*, app_lifecycle_management=None, code_repositories=None, custom_images=None, default_resource_spec=None, lifecycle_config_arns=None)
Bases:
object
The settings for the JupyterLab application.
- Parameters:
app_lifecycle_management (
Union
[IResolvable
,AppLifecycleManagementProperty
,Dict
[str
,Any
],None
]) – Indicates whether idle shutdown is activated for JupyterLab applications.code_repositories (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,CodeRepositoryProperty
,Dict
[str
,Any
]]],None
]) – A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterLab application.custom_images (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,CustomImageProperty
,Dict
[str
,Any
]]],None
]) – A list of custom SageMaker images that are configured to run as a JupyterLab app.default_resource_spec (
Union
[IResolvable
,ResourceSpecProperty
,Dict
[str
,Any
],None
]) – The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterLab app.lifecycle_config_arns (
Optional
[Sequence
[str
]]) – The Amazon Resource Name (ARN) of the lifecycle configurations attached to the user profile or domain. To remove a lifecycle config, you must setLifecycleConfigArns
to an empty list.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker jupyter_lab_app_settings_property = sagemaker.CfnUserProfile.JupyterLabAppSettingsProperty( app_lifecycle_management=sagemaker.CfnUserProfile.AppLifecycleManagementProperty( idle_settings=sagemaker.CfnUserProfile.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), code_repositories=[sagemaker.CfnUserProfile.CodeRepositoryProperty( repository_url="repositoryUrl" )], custom_images=[sagemaker.CfnUserProfile.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", # the properties below are optional image_version_number=123 )], default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] )
Attributes
- app_lifecycle_management
Indicates whether idle shutdown is activated for JupyterLab applications.
- code_repositories
A list of Git repositories that SageMaker automatically displays to users for cloning in the JupyterLab application.
- custom_images
A list of custom SageMaker images that are configured to run as a JupyterLab app.
- default_resource_spec
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterLab app.
- lifecycle_config_arns
The Amazon Resource Name (ARN) of the lifecycle configurations attached to the user profile or domain.
To remove a lifecycle config, you must set
LifecycleConfigArns
to an empty list.
JupyterServerAppSettingsProperty
- class CfnUserProfile.JupyterServerAppSettingsProperty(*, default_resource_spec=None, lifecycle_config_arns=None)
Bases:
object
The JupyterServer app settings.
- Parameters:
default_resource_spec (
Union
[IResolvable
,ResourceSpecProperty
,Dict
[str
,Any
],None
]) – The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app.lifecycle_config_arns (
Optional
[Sequence
[str
]]) – The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp. If you use this parameter, theDefaultResourceSpec
parameter is also required. .. epigraph:: To remove a Lifecycle Config, you must setLifecycleConfigArns
to an empty list.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker jupyter_server_app_settings_property = sagemaker.CfnUserProfile.JupyterServerAppSettingsProperty( default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] )
Attributes
- default_resource_spec
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the JupyterServer app.
- lifecycle_config_arns
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the JupyterServerApp.
If you use this parameter, the
DefaultResourceSpec
parameter is also required. .. epigraph:To remove a Lifecycle Config, you must set ``LifecycleConfigArns`` to an empty list.
KernelGatewayAppSettingsProperty
- class CfnUserProfile.KernelGatewayAppSettingsProperty(*, custom_images=None, default_resource_spec=None, lifecycle_config_arns=None)
Bases:
object
The KernelGateway app settings.
- Parameters:
custom_images (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,CustomImageProperty
,Dict
[str
,Any
]]],None
]) – A list of custom SageMaker images that are configured to run as a KernelGateway app.default_resource_spec (
Union
[IResolvable
,ResourceSpecProperty
,Dict
[str
,Any
],None
]) – The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app. .. epigraph:: The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the AWS CLI or AWS CloudFormation and the instance type parameter value is not passed.lifecycle_config_arns (
Optional
[Sequence
[str
]]) – The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain. .. epigraph:: To remove a Lifecycle Config, you must setLifecycleConfigArns
to an empty list.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker kernel_gateway_app_settings_property = sagemaker.CfnUserProfile.KernelGatewayAppSettingsProperty( custom_images=[sagemaker.CfnUserProfile.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", # the properties below are optional image_version_number=123 )], default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] )
Attributes
- custom_images
A list of custom SageMaker images that are configured to run as a KernelGateway app.
- default_resource_spec
The default instance type and the Amazon Resource Name (ARN) of the default SageMaker image used by the KernelGateway app.
The Amazon SageMaker Studio UI does not use the default instance type value set here. The default instance type set here is used when Apps are created using the AWS CLI or AWS CloudFormation and the instance type parameter value is not passed.
- lifecycle_config_arns
The Amazon Resource Name (ARN) of the Lifecycle Configurations attached to the the user profile or domain.
To remove a Lifecycle Config, you must set
LifecycleConfigArns
to an empty list.
RStudioServerProAppSettingsProperty
- class CfnUserProfile.RStudioServerProAppSettingsProperty(*, access_status=None, user_group=None)
Bases:
object
A collection of settings that configure user interaction with the
RStudioServerPro
app.- Parameters:
access_status (
Optional
[str
]) – Indicates whether the current user has access to theRStudioServerPro
app.user_group (
Optional
[str
]) – The level of permissions that the user has within theRStudioServerPro
app. This value defaults toUser
. TheAdmin
value allows the user access to the RStudio Administrative Dashboard.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker r_studio_server_pro_app_settings_property = sagemaker.CfnUserProfile.RStudioServerProAppSettingsProperty( access_status="accessStatus", user_group="userGroup" )
Attributes
- access_status
Indicates whether the current user has access to the
RStudioServerPro
app.
- user_group
The level of permissions that the user has within the
RStudioServerPro
app.This value defaults to
User
. TheAdmin
value allows the user access to the RStudio Administrative Dashboard.
ResourceSpecProperty
- class CfnUserProfile.ResourceSpecProperty(*, instance_type=None, lifecycle_config_arn=None, sage_maker_image_arn=None, sage_maker_image_version_arn=None)
Bases:
object
Specifies the ARN’s of a SageMaker image and SageMaker image version, and the instance type that the version runs on.
- Parameters:
instance_type (
Optional
[str
]) – The instance type that the image version runs on. .. epigraph:: JupyterServer apps only support thesystem
value. For KernelGateway apps , thesystem
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types.lifecycle_config_arn (
Optional
[str
]) – The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.sage_maker_image_arn (
Optional
[str
]) – The ARN of the SageMaker image that the image version belongs to.sage_maker_image_version_arn (
Optional
[str
]) – The ARN of the image version created on the instance.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker resource_spec_property = sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" )
Attributes
- instance_type
The instance type that the image version runs on.
JupyterServer apps only support the
system
value.For KernelGateway apps , the
system
value is translated toml.t3.medium
. KernelGateway apps also support all other values for available instance types.
- lifecycle_config_arn
The Amazon Resource Name (ARN) of the Lifecycle Configuration attached to the Resource.
- sage_maker_image_arn
The ARN of the SageMaker image that the image version belongs to.
- sage_maker_image_version_arn
The ARN of the image version created on the instance.
StudioWebPortalSettingsProperty
- class CfnUserProfile.StudioWebPortalSettingsProperty(*, hidden_app_types=None, hidden_ml_tools=None)
Bases:
object
Studio settings.
If these settings are applied on a user level, they take priority over the settings applied on a domain level.
- Parameters:
hidden_app_types (
Optional
[Sequence
[str
]]) – The Applications supported in Studio that are hidden from the Studio left navigation pane.hidden_ml_tools (
Optional
[Sequence
[str
]]) – The machine learning tools that are hidden from the Studio left navigation pane.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker studio_web_portal_settings_property = sagemaker.CfnUserProfile.StudioWebPortalSettingsProperty( hidden_app_types=["hiddenAppTypes"], hidden_ml_tools=["hiddenMlTools"] )
Attributes
//docs.aws.amazon.com/sagemaker/latest/dg/studio-updated-apps.html>`_ that are hidden from the Studio left navigation pane.
- See:
- Type:
The `Applications supported in Studio <https
The machine learning tools that are hidden from the Studio left navigation pane.
UserSettingsProperty
- class CfnUserProfile.UserSettingsProperty(*, code_editor_app_settings=None, custom_file_system_configs=None, custom_posix_user_config=None, default_landing_uri=None, execution_role=None, jupyter_lab_app_settings=None, jupyter_server_app_settings=None, kernel_gateway_app_settings=None, r_studio_server_pro_app_settings=None, security_groups=None, sharing_settings=None, space_storage_settings=None, studio_web_portal=None, studio_web_portal_settings=None)
Bases:
object
A collection of settings that apply to users of Amazon SageMaker Studio.
These settings are specified when the CreateUserProfile API is called, and as
DefaultUserSettings
when the CreateDomain API is called.SecurityGroups
is aggregated when specified in both calls. For all other settings inUserSettings
, the values specified inCreateUserProfile
take precedence over those specified inCreateDomain
.- Parameters:
code_editor_app_settings (
Union
[IResolvable
,CodeEditorAppSettingsProperty
,Dict
[str
,Any
],None
]) – The Code Editor application settings.custom_file_system_configs (
Union
[IResolvable
,Sequence
[Union
[IResolvable
,CustomFileSystemConfigProperty
,Dict
[str
,Any
]]],None
]) – The settings for assigning a custom file system to a user profile. Permitted users can access this file system in Amazon SageMaker Studio.custom_posix_user_config (
Union
[IResolvable
,CustomPosixUserConfigProperty
,Dict
[str
,Any
],None
]) – Details about the POSIX identity that is used for file system operations.default_landing_uri (
Optional
[str
]) – The default experience that the user is directed to when accessing the domain. The supported values are:. -studio::
: Indicates that Studio is the default experience. This value can only be passed ifStudioWebPortal
is set toENABLED
. -app:JupyterServer:
: Indicates that Studio Classic is the default experience.execution_role (
Optional
[str
]) – The execution role for the user.jupyter_lab_app_settings (
Union
[IResolvable
,JupyterLabAppSettingsProperty
,Dict
[str
,Any
],None
]) – The settings for the JupyterLab application.jupyter_server_app_settings (
Union
[IResolvable
,JupyterServerAppSettingsProperty
,Dict
[str
,Any
],None
]) – The Jupyter server’s app settings.kernel_gateway_app_settings (
Union
[IResolvable
,KernelGatewayAppSettingsProperty
,Dict
[str
,Any
],None
]) – The kernel gateway app settings.r_studio_server_pro_app_settings (
Union
[IResolvable
,RStudioServerProAppSettingsProperty
,Dict
[str
,Any
],None
]) – A collection of settings that configure user interaction with theRStudioServerPro
app.security_groups (
Optional
[Sequence
[str
]]) – The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication. Optional when theCreateDomain.AppNetworkAccessType
parameter is set toPublicInternetOnly
. Required when theCreateDomain.AppNetworkAccessType
parameter is set toVpcOnly
, unless specified as part of theDefaultUserSettings
for the domain. Amazon SageMaker adds a security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.sharing_settings (
Union
[IResolvable
,SharingSettingsProperty
,Dict
[str
,Any
],None
]) – Specifies options for sharing Amazon SageMaker Studio notebooks.space_storage_settings (
Union
[IResolvable
,DefaultSpaceStorageSettingsProperty
,Dict
[str
,Any
],None
]) – The storage settings for a space.studio_web_portal (
Optional
[str
]) – Whether the user can access Studio. If this value is set toDISABLED
, the user cannot access Studio, even if that is the default experience for the domain.studio_web_portal_settings (
Union
[IResolvable
,StudioWebPortalSettingsProperty
,Dict
[str
,Any
],None
]) – Studio settings. If these settings are applied on a user level, they take priority over the settings applied on a domain level.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk import aws_sagemaker as sagemaker user_settings_property = sagemaker.CfnUserProfile.UserSettingsProperty( code_editor_app_settings=sagemaker.CfnUserProfile.CodeEditorAppSettingsProperty( app_lifecycle_management=sagemaker.CfnUserProfile.AppLifecycleManagementProperty( idle_settings=sagemaker.CfnUserProfile.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), custom_images=[sagemaker.CfnUserProfile.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", # the properties below are optional image_version_number=123 )], default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), custom_file_system_configs=[sagemaker.CfnUserProfile.CustomFileSystemConfigProperty( efs_file_system_config=sagemaker.CfnUserProfile.EFSFileSystemConfigProperty( file_system_id="fileSystemId", # the properties below are optional file_system_path="fileSystemPath" ) )], custom_posix_user_config=sagemaker.CfnUserProfile.CustomPosixUserConfigProperty( gid=123, uid=123 ), default_landing_uri="defaultLandingUri", execution_role="executionRole", jupyter_lab_app_settings=sagemaker.CfnUserProfile.JupyterLabAppSettingsProperty( app_lifecycle_management=sagemaker.CfnUserProfile.AppLifecycleManagementProperty( idle_settings=sagemaker.CfnUserProfile.IdleSettingsProperty( idle_timeout_in_minutes=123, lifecycle_management="lifecycleManagement", max_idle_timeout_in_minutes=123, min_idle_timeout_in_minutes=123 ) ), code_repositories=[sagemaker.CfnUserProfile.CodeRepositoryProperty( repository_url="repositoryUrl" )], custom_images=[sagemaker.CfnUserProfile.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", # the properties below are optional image_version_number=123 )], default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), jupyter_server_app_settings=sagemaker.CfnUserProfile.JupyterServerAppSettingsProperty( default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), kernel_gateway_app_settings=sagemaker.CfnUserProfile.KernelGatewayAppSettingsProperty( custom_images=[sagemaker.CfnUserProfile.CustomImageProperty( app_image_config_name="appImageConfigName", image_name="imageName", # the properties below are optional image_version_number=123 )], default_resource_spec=sagemaker.CfnUserProfile.ResourceSpecProperty( instance_type="instanceType", lifecycle_config_arn="lifecycleConfigArn", sage_maker_image_arn="sageMakerImageArn", sage_maker_image_version_arn="sageMakerImageVersionArn" ), lifecycle_config_arns=["lifecycleConfigArns"] ), r_studio_server_pro_app_settings=sagemaker.CfnUserProfile.RStudioServerProAppSettingsProperty( access_status="accessStatus", user_group="userGroup" ), security_groups=["securityGroups"], sharing_settings=sagemaker.CfnUserProfile.SharingSettingsProperty( notebook_output_option="notebookOutputOption", s3_kms_key_id="s3KmsKeyId", s3_output_path="s3OutputPath" ), space_storage_settings=sagemaker.CfnUserProfile.DefaultSpaceStorageSettingsProperty( default_ebs_storage_settings=sagemaker.CfnUserProfile.DefaultEbsStorageSettingsProperty( default_ebs_volume_size_in_gb=123, maximum_ebs_volume_size_in_gb=123 ) ), studio_web_portal="studioWebPortal", studio_web_portal_settings=sagemaker.CfnUserProfile.StudioWebPortalSettingsProperty( hidden_app_types=["hiddenAppTypes"], hidden_ml_tools=["hiddenMlTools"] ) )
Attributes
- code_editor_app_settings
The Code Editor application settings.
- custom_file_system_configs
The settings for assigning a custom file system to a user profile.
Permitted users can access this file system in Amazon SageMaker Studio.
- custom_posix_user_config
Details about the POSIX identity that is used for file system operations.
- default_landing_uri
.
studio::
: Indicates that Studio is the default experience. This value can only be passed ifStudioWebPortal
is set toENABLED
.app:JupyterServer:
: Indicates that Studio Classic is the default experience.
- See:
- Type:
The default experience that the user is directed to when accessing the domain. The supported values are
- execution_role
The execution role for the user.
- jupyter_lab_app_settings
The settings for the JupyterLab application.
- jupyter_server_app_settings
The Jupyter server’s app settings.
- kernel_gateway_app_settings
The kernel gateway app settings.
- r_studio_server_pro_app_settings
A collection of settings that configure user interaction with the
RStudioServerPro
app.
- security_groups
The security groups for the Amazon Virtual Private Cloud (VPC) that the domain uses for communication.
Optional when the
CreateDomain.AppNetworkAccessType
parameter is set toPublicInternetOnly
.Required when the
CreateDomain.AppNetworkAccessType
parameter is set toVpcOnly
, unless specified as part of theDefaultUserSettings
for the domain.Amazon SageMaker adds a security group to allow NFS traffic from Amazon SageMaker Studio. Therefore, the number of security groups that you can specify is one less than the maximum number shown.
- sharing_settings
Specifies options for sharing Amazon SageMaker Studio notebooks.
- space_storage_settings
The storage settings for a space.
- studio_web_portal
Whether the user can access Studio.
If this value is set to
DISABLED
, the user cannot access Studio, even if that is the default experience for the domain.
- studio_web_portal_settings
Studio settings.
If these settings are applied on a user level, they take priority over the settings applied on a domain level.