Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
Esempi di utilizzo API dello strumento Converse
Puoi usare Converse API per consentire a una modella di utilizzare uno strumento in una conversazione. I seguenti Python alcuni esempi mostrano come utilizzare uno strumento che restituisce la canzone più popolare su una stazione radio fittizia. L'esempio di Converse mostra come utilizzare uno strumento in modo sincrono. L'ConverseStreamesempio mostra come utilizzare uno strumento in modo asincrono. Per altri esempi di codice, vedere. Esempi di codice per Amazon Bedrock Runtime utilizzando AWS SDKs
- Converse
-
Questo esempio mostra come utilizzare uno strumento con l'
Converse
operazione con Command Rmodello.# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to use tools with the Converse API and the Cohere Command R model. """ import logging import json import boto3 from botocore.exceptions import ClientError class StationNotFoundError(Exception): """Raised when a radio station isn't found.""" pass logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def get_top_song(call_sign): """Returns the most popular song for the requested station. Args: call_sign (str): The call sign for the station for which you want the most popular song. Returns: response (json): The most popular song and artist. """ song = "" artist = "" if call_sign == 'WZPZ': song = "Elemental Hotel" artist = "8 Storey Hike" else: raise StationNotFoundError(f"Station {call_sign} not found.") return song, artist def generate_text(bedrock_client, model_id, tool_config, input_text): """Generates text using the supplied Amazon Bedrock model. If necessary, the function handles tool use requests and sends the result to the model. Args: bedrock_client: The Boto3 Bedrock runtime client. model_id (str): The Amazon Bedrock model ID. tool_config (dict): The tool configuration. input_text (str): The input text. Returns: Nothing. """ logger.info("Generating text with model %s", model_id) # Create the initial message from the user input. messages = [{ "role": "user", "content": [{"text": input_text}] }] response = bedrock_client.converse( modelId=model_id, messages=messages, toolConfig=tool_config ) output_message = response['output']['message'] messages.append(output_message) stop_reason = response['stopReason'] if stop_reason == 'tool_use': # Tool use requested. Call the tool and send the result to the model. tool_requests = response['output']['message']['content'] for tool_request in tool_requests: if 'toolUse' in tool_request: tool = tool_request['toolUse'] logger.info("Requesting tool %s. Request: %s", tool['name'], tool['toolUseId']) if tool['name'] == 'top_song': tool_result = {} try: song, artist = get_top_song(tool['input']['sign']) tool_result = { "toolUseId": tool['toolUseId'], "content": [{"json": {"song": song, "artist": artist}}] } except StationNotFoundError as err: tool_result = { "toolUseId": tool['toolUseId'], "content": [{"text": err.args[0]}], "status": 'error' } tool_result_message = { "role": "user", "content": [ { "toolResult": tool_result } ] } messages.append(tool_result_message) # Send the tool result to the model. response = bedrock_client.converse( modelId=model_id, messages=messages, toolConfig=tool_config ) output_message = response['output']['message'] # print the final response from the model. for content in output_message['content']: print(json.dumps(content, indent=4)) def main(): """ Entrypoint for tool use example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = "cohere.command-r-v1:0" input_text = "What is the most popular song on WZPZ?" tool_config = { "tools": [ { "toolSpec": { "name": "top_song", "description": "Get the most popular song played on a radio station.", "inputSchema": { "json": { "type": "object", "properties": { "sign": { "type": "string", "description": "The call sign for the radio station for which you want the most popular song. Example calls signs are WZPZ, and WKRP." } }, "required": [ "sign" ] } } } } ] } bedrock_client = boto3.client(service_name='bedrock-runtime') try: print(f"Question: {input_text}") generate_text(bedrock_client, model_id, tool_config, input_text) except ClientError as err: message = err.response['Error']['Message'] logger.error("A client error occurred: %s", message) print(f"A client error occured: {message}") else: print( f"Finished generating text with model {model_id}.") if __name__ == "__main__": main()
- ConverseStream
-
Questo esempio mostra come utilizzare uno strumento con l'operazione di
ConverseStream
streaming e il Anthropic Claude 3 Haikumodello.# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 """ Shows how to use a tool with a streaming conversation. """ import logging import json import boto3 from botocore.exceptions import ClientError logger = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) class StationNotFoundError(Exception): """Raised when a radio station isn't found.""" pass def get_top_song(call_sign): """Returns the most popular song for the requested station. Args: call_sign (str): The call sign for the station for which you want the most popular song. Returns: response (json): The most popular song and artist. """ song = "" artist = "" if call_sign == 'WZPZ': song = "Elemental Hotel" artist = "8 Storey Hike" else: raise StationNotFoundError(f"Station {call_sign} not found.") return song, artist def stream_messages(bedrock_client, model_id, messages, tool_config): """ Sends a message to a model and streams the response. Args: bedrock_client: The Boto3 Bedrock runtime client. model_id (str): The model ID to use. messages (JSON) : The messages to send to the model. tool_config : Tool Information to send to the model. Returns: stop_reason (str): The reason why the model stopped generating text. message (JSON): The message that the model generated. """ logger.info("Streaming messages with model %s", model_id) response = bedrock_client.converse_stream( modelId=model_id, messages=messages, toolConfig=tool_config ) stop_reason = "" message = {} content = [] message['content'] = content text = '' tool_use = {} #stream the response into a message. for chunk in response['stream']: if 'messageStart' in chunk: message['role'] = chunk['messageStart']['role'] elif 'contentBlockStart' in chunk: tool = chunk['contentBlockStart']['start']['toolUse'] tool_use['toolUseId'] = tool['toolUseId'] tool_use['name'] = tool['name'] elif 'contentBlockDelta' in chunk: delta = chunk['contentBlockDelta']['delta'] if 'toolUse' in delta: if 'input' not in tool_use: tool_use['input'] = '' tool_use['input'] += delta['toolUse']['input'] elif 'text' in delta: text += delta['text'] print(delta['text'], end='') elif 'contentBlockStop' in chunk: if 'input' in tool_use: tool_use['input'] = json.loads(tool_use['input']) content.append({'toolUse': tool_use}) tool_use = {} else: content.append({'text': text}) text = '' elif 'messageStop' in chunk: stop_reason = chunk['messageStop']['stopReason'] return stop_reason, message def main(): """ Entrypoint for streaming tool use example. """ logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") model_id = "anthropic.claude-3-haiku-20240307-v1:0" input_text = "What is the most popular song on WZPZ?" try: bedrock_client = boto3.client(service_name='bedrock-runtime') # Create the initial message from the user input. messages = [{ "role": "user", "content": [{"text": input_text}] }] # Define the tool to send to the model. tool_config = { "tools": [ { "toolSpec": { "name": "top_song", "description": "Get the most popular song played on a radio station.", "inputSchema": { "json": { "type": "object", "properties": { "sign": { "type": "string", "description": "The call sign for the radio station for which you want the most popular song. Example calls signs are WZPZ and WKRP." } }, "required": ["sign"] } } } } ] } # Send the message and get the tool use request from response. stop_reason, message = stream_messages( bedrock_client, model_id, messages, tool_config) messages.append(message) if stop_reason == "tool_use": for content in message['content']: if 'toolUse' in content: tool = content['toolUse'] if tool['name'] == 'top_song': tool_result = {} try: song, artist = get_top_song(tool['input']['sign']) tool_result = { "toolUseId": tool['toolUseId'], "content": [{"json": {"song": song, "artist": artist}}] } except StationNotFoundError as err: tool_result = { "toolUseId": tool['toolUseId'], "content": [{"text": err.args[0]}], "status": 'error' } tool_result_message = { "role": "user", "content": [ { "toolResult": tool_result } ] } # Add the result info to message. messages.append(tool_result_message) #Send the messages, including the tool result, to the model. stop_reason, message = stream_messages( bedrock_client, model_id, messages, tool_config) except ClientError as err: message = err.response['Error']['Message'] logger.error("A client error occurred: %s", message) print("A client error occured: " + format(message)) else: print( f"\nFinished streaming messages with model {model_id}.") if __name__ == "__main__": main()