Le traduzioni sono generate tramite traduzione automatica. In caso di conflitto tra il contenuto di una traduzione e la versione originale in Inglese, quest'ultima prevarrà.
Puoi usare il Converse APIper consentire a un modello di utilizzare uno strumento in una conversazione. I seguenti Python alcuni esempi mostrano come utilizzare uno strumento che restituisce la canzone più popolare su una stazione radio immaginaria. L'esempio di Converse mostra come utilizzare uno strumento in modo sincrono. L'ConverseStreamesempio mostra come utilizzare uno strumento in modo asincrono. Per altri esempi di codice, vedere. Esempi di codice per Amazon Bedrock Runtime utilizzando AWS SDKs
Questo esempio mostra come utilizzare uno strumento con l'Converse
operazione con Command Rmodello.
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: Apache-2.0
"""
Shows how to use tools with the <noloc>Converse</noloc> API and the Cohere Command R model.
"""
import logging
import json
import boto3
from botocore.exceptions import ClientError
class StationNotFoundError(Exception):
"""Raised when a radio station isn't found."""
pass
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
def get_top_song(call_sign):
"""Returns the most popular song for the requested station.
Args:
call_sign (str): The call sign for the station for which you want
the most popular song.
Returns:
response (json): The most popular song and artist.
"""
song = ""
artist = ""
if call_sign == 'WZPZ':
song = "Elemental Hotel"
artist = "8 Storey Hike"
else:
raise StationNotFoundError(f"Station {call_sign} not found.")
return song, artist
def generate_text(bedrock_client, model_id, tool_config, input_text):
"""Generates text using the supplied Amazon Bedrock model. If necessary,
the function handles tool use requests and sends the result to the model.
Args:
bedrock_client: The Boto3 Bedrock runtime client.
model_id (str): The Amazon Bedrock model ID.
tool_config (dict): The tool configuration.
input_text (str): The input text.
Returns:
Nothing.
"""
logger.info("Generating text with model %s", model_id)
# Create the initial message from the user input.
messages = [{
"role": "user",
"content": [{"text": input_text}]
}]
response = bedrock_client.converse(
modelId=model_id,
messages=messages,
toolConfig=tool_config
)
output_message = response['output']['message']
messages.append(output_message)
stop_reason = response['stopReason']
if stop_reason == 'tool_use':
# Tool use requested. Call the tool and send the result to the model.
tool_requests = response['output']['message']['content']
for tool_request in tool_requests:
if 'toolUse' in tool_request:
tool = tool_request['toolUse']
logger.info("Requesting tool %s. Request: %s",
tool['name'], tool['toolUseId'])
if tool['name'] == 'top_song':
tool_result = {}
try:
song, artist = get_top_song(tool['input']['sign'])
tool_result = {
"toolUseId": tool['toolUseId'],
"content": [{"json": {"song": song, "artist": artist}}]
}
except StationNotFoundError as err:
tool_result = {
"toolUseId": tool['toolUseId'],
"content": [{"text": err.args[0]}],
"status": 'error'
}
tool_result_message = {
"role": "user",
"content": [
{
"toolResult": tool_result
}
]
}
messages.append(tool_result_message)
# Send the tool result to the model.
response = bedrock_client.converse(
modelId=model_id,
messages=messages,
toolConfig=tool_config
)
output_message = response['output']['message']
# print the final response from the model.
for content in output_message['content']:
print(json.dumps(content, indent=4))
def main():
"""
Entrypoint for tool use example.
"""
logging.basicConfig(level=logging.INFO,
format="%(levelname)s: %(message)s")
model_id = "cohere.command-r-v1:0"
input_text = "What is the most popular song on WZPZ?"
tool_config = {
"tools": [
{
"toolSpec": {
"name": "top_song",
"description": "Get the most popular song played on a radio station.",
"inputSchema": {
"json": {
"type": "object",
"properties": {
"sign": {
"type": "string",
"description": "The call sign for the radio station for which you want the most popular song. Example calls signs are WZPZ, and WKRP."
}
},
"required": [
"sign"
]
}
}
}
}
]
}
bedrock_client = boto3.client(service_name='bedrock-runtime')
try:
print(f"Question: {input_text}")
generate_text(bedrock_client, model_id, tool_config, input_text)
except ClientError as err:
message = err.response['Error']['Message']
logger.error("A client error occurred: %s", message)
print(f"A client error occured: {message}")
else:
print(
f"Finished generating text with model {model_id}.")
if __name__ == "__main__":
main()