Select your cookie preferences

We use essential cookies and similar tools that are necessary to provide our site and services. We use performance cookies to collect anonymous statistics, so we can understand how customers use our site and make improvements. Essential cookies cannot be deactivated, but you can choose “Customize” or “Decline” to decline performance cookies.

If you agree, AWS and approved third parties will also use cookies to provide useful site features, remember your preferences, and display relevant content, including relevant advertising. To accept or decline all non-essential cookies, choose “Accept” or “Decline.” To make more detailed choices, choose “Customize.”

Train custom entity recognizers (API)

Focus mode
Train custom entity recognizers (API) - Amazon Comprehend

To create and train a custom entity recognition model, use the Amazon Comprehend CreateEntityRecognizer API operation

Training custom entity recognizers using the AWS Command Line Interface

The following examples demonstrate using the CreateEntityRecognizer operation and other associated APIs with the AWS CLI.

The examples are formatted for Unix, Linux, and macOS. For Windows, replace the backslash (\) Unix continuation character at the end of each line with a caret (^).

Create a custom entity recognizer using the create-entity-recognizer CLI command. For information about the input-data-config parameter, see CreateEntityRecognizer in the Amazon Comprehend API Reference.

aws comprehend create-entity-recognizer \ --language-code en \ --recognizer-name test-6 \ --data-access-role-arn "arn:aws:iam::account number:role/service-role/AmazonComprehendServiceRole-role" \ --input-data-config "EntityTypes=[{Type=PERSON}],Documents={S3Uri=s3://Bucket Name/Bucket Path/documents}, Annotations={S3Uri=s3://Bucket Name/Bucket Path/annotations}" \ --region region

List all entity recognizers in a Region using the list-entity-recognizers CLI command..

aws comprehend list-entity-recognizers \ --region region

Check Job Status of custom entity recognizers using the describe-entity-recognizer CLI command..

aws comprehend describe-entity-recognizer \ --entity-recognizer-arn arn:aws:comprehend:region:account number:entity-recognizer/test-6 \ --region region

Training custom entity recognizers using the AWS SDK for Java

This example creates a custom entity recognizer and trains the model, using Java

For Amazon Comprehend examples that use Java, see Amazon Comprehend Java examples.

Training custom entity recognizers using Python (Boto3)

Instantiate Boto3 SDK:

import boto3 import uuid comprehend = boto3.client("comprehend", region_name="region")

Create entity recognizer:

response = comprehend.create_entity_recognizer( RecognizerName="Recognizer-Name-Goes-Here-{}".format(str(uuid.uuid4())), LanguageCode="en", DataAccessRoleArn="Role ARN", InputDataConfig={ "EntityTypes": [ { "Type": "ENTITY_TYPE" } ], "Documents": { "S3Uri": "s3://Bucket Name/Bucket Path/documents" }, "Annotations": { "S3Uri": "s3://Bucket Name/Bucket Path/annotations" } } ) recognizer_arn = response["EntityRecognizerArn"]

List all recognizers:

response = comprehend.list_entity_recognizers()

Wait for recognizer to reach TRAINED status:

while True: response = comprehend.describe_entity_recognizer( EntityRecognizerArn=recognizer_arn ) status = response["EntityRecognizerProperties"]["Status"] if "IN_ERROR" == status: sys.exit(1) if "TRAINED" == status: break time.sleep(10)
PrivacySite termsCookie preferences
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.