Amazon EMR
管理ガイド

クラスターの設定のガイドラインとベストプラクティス

このセクションのガイドラインを使用して、インスタンスタイプ、購入オプション、EMR クラスター内の各ノードタイプをプロビジョニングするためのストレージの容量を決定することができます。

どのインスタンスタイプを使用するべきか

インスタンスグループ設定を使用しているか、あるいはクラスターにインスタンスフリート設定を使用しているかによって、クラスターに EC2 インスタンスを追加する方法は複数あります。

  • インスタンスグループ

    • 既存のコアおよびタスクインスタンスグループと同じタイプのインスタンスを手動で追加します。

    • 手動でタスクインスタンスグループを追加します。これには、別のインスタンスタイプを使用できます。

    • 1 つのインスタンスグループの自動スケーリングを Amazon EMR にセットアップして、指定する Amazon CloudWatch メトリクスの値に基づいて自動的にインスタンスを追加、削除します。詳細については、「クラスターリソースのスケーリング」を参照してください。

  • インスタンスフリート

    • 単一のタスクインスタンスフリートを追加します。

    • 既存のコアおよびタスクインスタンスフリートにオンデマンドおよびスポットインスタンスのターゲット容量を変更します。詳細については、「インスタンスフリートを構成する」を参照してください。

クラスターのインスタンスを計画する 1 つの方法は、代表的なデータのサンプルセットで、テストクラスターを実行し、クラスター内のノードの使用状況を監視することです。詳細については、「クラスターを表示し、モニタリングする」を参照してください。別の方法は、考慮するインスタンスの容量を計算し、その値をデータのサイズに対して比較することです。

一般的に、タスクを割り当てるマスターノードタイプでは、処理能力の大きい EC2 インスタンスは必要ありません。タスクを処理して HDFSにデータを保存するコアノードタイプの EC2 インスタンスは、処理能力とストレージ容量の両方が必要であり、データを保存しないタスクノードタイプの EC2 インスタンスは、処理能力のみが必要です。利用可能な EC2 インスタンスとその構成のガイドラインについては、「 EC2 インスタンスの設定」を参照してください。

ほとんどの Amazon EMR クラスターには次のガイドラインがあてはまります。

  • マスターノードには大量の計算要件がありません。ノードが 50 以下の多くのクラスターでは、m4.large インスタンスを使用することを検討してください。ノードが 50 を超えるクラスターの場合は、m4.xlarge の使用を検討してください。

  • コアノードとタスクノードの計算ニーズは、アプリケーションが実行する処理のタイプによって異なります。m4.large インスタンスタイプでは多くのジョブを実行できます。これは、CPU、ディスク領域、入出力に関して、バランスの取れたパフォーマンスを発揮します。アプリケーションに遅延を招く外部依存関係 (データを収集するためのウェブのクローリングなど) がある場合は、t2.medium インスタンスでクラスターを実行することによって、依存関係の終了をインスタンスが待機する間にかかるコストを削減することができます。パフォーマンスの向上のため、コアノードとタスクノードには、m4.xlarge インスタンスを使用して、クラスターを実行することを検討してください。クラスターの段階によって必要な容量が異なる場合は、少ない数のコアノードから始め、タスクノードの数を増減してジョブフローでの容量要件の変化に合わせます。

  • ほとんどの Amazon EMR クラスターは、m4.large および m4.xlarge などの標準 EC2 インスタンスタイプで実行できます。計算集約的なクラスターは、比率的に RAM より CPU が多い、High CPU インスタンス上で実行するとメリットがあります。データベースおよびメモリキャッシュアプリケーションは、大きいメモリインスタンスで実行するとメリットがあります。解析、NLP、機械学習のようなネットワークと CPU を多く使用するアプリケーションは、クラスターコンピューティングインスタンスで実行するとメリットがあります。この場合、比例的に CPU リソースが大きくなり、ネットワークパフォーマンスが向上します。

  • 処理可能なデータの量は、コアノードの容量と、入力、処理時、および出力のデータのサイズによって異なります。処理中、入力、中間、および出力データセットはすべてクラスターに存在します。

  • デフォルトで、1 つの AWS アカウントで実行できる EC2 インスタンスの総数は 20 です。これはつまり、クラスターに構成できるノードの総数が 20 であることを意味します。アカウントの制限引き上げをリクエストする方法について詳しくは、「AWS の制限」を参照してください。

スポットインスタンスはどのような場合に使用しますか?

Amazon EMR でクラスターを起動するとき、マスター、コア、またはタスクのインスタンスを選んでスポットインスタンス上で起動できます。各インスタンスグループタイプがクラスターではそれぞれ異なる役割を果たすので、スポットインスタンス上で各ノードタイプを起動したときの意味合いもそれぞれ異なります。クラスターの実行中にインスタンス購入オプションを変更することはできません。マスターノードおよびコアノードのオンデマンドインスタンスをスポットインスタンスに変更する、またはその逆に変更するには、クラスターを終了して新しいクラスターを起動する必要があります。タスクノードについては、新しいタスクインスタンスグループまたはインスタンスフリートを開始し、古いものを削除できます。

タスクノードスポットインスタンスの終了によるジョブの失敗を防止する Amazon EMR 設定

タスクノードの実行にはスポットインスタンスが使用されることが多いため、スポットインスタンスで実行されているタスクノードが終了したときに実行中のジョブが失敗しないように、Amazon EMR には YARN ジョブをスケジュールするためのデフォルト機能があります。Amazon EMR では、これを行うためにアプリケーションマスタープロセスの実行先としてコアノードのみを許可します。アプリケーションマスタープロセスは、ジョブの実行を制御するため、ジョブの有効期限まで有効に存続する必要があります。

Amazon EMR リリースバージョン 5.19.0 以降では、これを実現するために組み込みの YARN ノードラベル機能を使用します(以前のバージョンではコードパッチを使用していました)。yarn-site 設定分類と capacity-scheduler 設定分類のプロパティは、YARN capacity-scheduler および fair-scheduler でノードラベルを利用するように、デフォルトで設定されます。Amazon EMR は、コアノードに CORE ラベルを自動的に付け、CORE ラベルの付いたノードでのみアプリケーションマスターをスケジュールするようにプロパティを設定します。関連するプロパティを、yarn-site 設定分類と capacity-scheduler 設定分類で手動で変更したり、関連する XML ファイルで直接変更したりすると、この機能が破損または変更される場合があります。

デフォルトでは、Amazon EMR は次のプロパティおよび値を設定します。これらのプロパティを設定するときは注意が必要です。

  • 全ノード上の yarn-site (yarn-site.xml)

    • yarn.node-labels.enabled: true

    • yarn.node-labels.am.default-node-label-expression: 'CORE'

    • yarn.node-labels.fs-store.root-dir: '/apps/yarn/nodelabels'

    • yarn.node-labels.configuration-type: 'distributed'

  • マスターおよびコアノード上の yarn-site (yarn-site.xml)

    • yarn.nodemanager.node-labels.provider: 'config'

    • yarn.nodemanager.node-labels.provider.configured-node-partition: 'CORE'

  • 全ノード上の capacity-scheduler (capacity-scheduler.xml)

    • yarn.scheduler.capacity.root.accessible-node-labels: '*'

    • yarn.scheduler.capacity.root.accessible-node-labels.CORE.capacity: 100

    • yarn.scheduler.capacity.root.default.accessible-node-labels: '*'

    • yarn.scheduler.capacity.root.default.accessible-node-labels.CORE.capacity: 100

スポットインスタンス上のマスターノード

マスターノードは、クラスターを制御し、指示を与えます。マスターノードが終了するとクラスターも終了するので、マスターノードは、突然終了しても問題が発生しないクラスターを実行している場合にのみ、スポットインスタンスとして起動するようにします。たとえば、新しいアプリケーションをテストしている場合、Amazon S3 などの外部ストアにクラスターのデータを定期的に保持している場合、またはクラスターが確実に完了することよりもコストの方が重要なクラスターを実行している場合などがこれに当てはまります。

マスターインスタンスグループをスポットインスタンスとして起動する場合、クラスターは、そのスポットインスタンスリクエストが満たされるまで開始されません。最大スポット料金を選択する場合は、この点を考慮に入れてください。

スポットインスタンスマスターノードを追加できるのは、クラスターの起動時のみです。実行中のクラスターに対してマスターノードを追加したり削除したりすることはできません。

通常は、クラスター全体(すべてのインスタンスグループ)をスポットインスタンスとして実行している場合にのみ、マスターノードをスポットインスタンスとして実行します。

スポットインスタンス上のコアノード

コアノードはデータを処理して、HDFS を使用して情報を格納します。コアインスタンスを終了すると、データ損失のリスクがあります。このため、スポットインスタンス上でコアノードを実行するのは、HDFS での一部のデータ損失を許容できる場合に限る必要があります。

コアインスタンスグループをスポットインスタンスとして起動した場合、Amazon EMR がインスタンスグループが起動するのは、リクエストされたすべてのコアインスタンスのプロビジョニングが完了してからです。つまり、6 個の Amazon EC2 インスタンスをリクエストした場合、最大スポット料金またはそれを下回る料金で使用できるインスタンスが 5 個しかないと、インスタンスグループは起動しません。Amazon EMR は、6 個の Amazon EC2 インスタンスすべてが使用できるようになるまで、または、お客様自身がクラスターを終了するまで待ち続けます。1 つのコアインスタンスグループに含まれるスポットインスタンスの数を変更して、実行中のクラスターに容量を追加することができます。インスタンスグループの操作方法およびインスタンスフリートでのスポットインスタンスの動作の詳細については、「インスタンスフリートまたはユニフォームインスタンスグループでクラスターを作成する」を参照してください。

スポットインスタンス上のタスクノード

タスクノードはデータを処理しますが、HDFS に永続的データを保持しません。スポット価格が最大スポット料金を上回ったためにクラスターが終了した場合、データは失われず、クラスターに対する影響も最小限に抑えられます。

1 つ以上のタスクインスタンスグループをスポットインスタンスとして起動すると、Amazon EMR は、最大スポット料金を使用して、可能な数だけタスクノードをプロビジョニングします。つまり、6 個のノードを持つタスクインスタンスグループをリクエストした場合、最大スポット料金またはそれを下回る料金で使用できるスポットインスタンスノードが 5 個しかないと、インスタンスグループは Amazon EMR によって 5 個のノードで起動され、使用できるようになると 6 個目が追加されます。

スポットインスタンスとしてタスクインスタンスグループを起動すると、最小限のコストで戦略的にクラスターの容量を拡大できます。マスターインスタンスグループとコアインスタンスグループをオンデマンドインスタンスとして起動する場合、その容量はクラスターを実行するために確保されます。必要に応じて、タスクインスタンスグループにタスクインスタンスを追加し、ピークトラフィックの負荷に対応するか、データ処理の速度を上げます。

タスクノードは、コンソール、AWS CLI、または API を使用して追加または削除できます。また、タスクグループを追加することもできますが、作成後にタスクグループを削除することはできません。

アプリケーション向けのインスタンスの構成シナリオ

次の表は、通常さまざまなアプリケーションシナリオに適しているノードタイプ購入オプションと構成のクイックリファレンスです。各シナリオタイプの詳細情報を表示するには、リンクを選択します。

アプリケーションシナリオ マスターノード購入オプション コアノード購入オプション タスクノード購入オプション
長時間稼働クラスターおよびデータウェアハウス オンデマンド オンデマンドまたはインスタンスフリートの組み合わせ スポットまたはインスタンスフリートの組み合わせ
コスト主導の作業 スポット スポット スポット
データクリティカルな作業 オンデマンド オンデマンド スポットまたはインスタンスフリートの組み合わせ
アプリケーションのテスト スポット スポット スポット

スポットインスタンスを使って Amazon EMR クラスターを実行するのが便利なシナリオはいくつかあります。

長時間稼働クラスターおよびデータウェアハウス

コンピュータの計算処理機能で変動を予測できる永続的な Amazon EMR クラスター (データウェアハウスなど) を実行している場合は、スポットインスタンスによって低コストでピーク時の需要に対応できます。マスターインスタンスグループおよびコアインスタンスグループをオンデマンドインスタンスとして通常の容量に対応するように起動し、タスクインスタンスグループをスポットインスタンスとしてピーク負荷の要件に対応するように起動することができます。

コスト主導の作業

完了までの時間よりも、コストをかけないことの方が重要な一時クラスターを実行している場合、一部の作業が失われてもよいときは、クラスター全体(マスター、コア、およびタスクインスタンスグループ)をスポットインスタンスとして実行して、最大限のコスト削減を実現できます。

データクリティカルな作業

完了までの時間よりも、コストをかけないことの方が重要な一時クラスターを実行している場合、すべての作業を保持する必要があるときは、マスターインスタンスグループとコアインスタンスグループをオンデマンドとして起動し、スポットインスタンスの 1 つ以上のタスクインスタンスグループで補完します。マスターインスタンスグループとコアインスタンスグループをオンデマンドとして実行すると、データが HDFS に確実に保持されるので、スポット市場の変動によるクラスター停止が発生しなくなります。同時にスポットインスタンスとしてタスクインスタンスグループを実行することで、コストを削減できます。

アプリケーションのテスト

実稼働環境で起動できるよう準備する目的で新しいアプリケーションをテストする場合は、クラスター全体(マスター、コア、およびタスクインスタンスグループ)をスポットインスタンスとして実行し、テストコストを削減できます。

クラスターの必要な HDFS 容量の計算

クラスターで利用できる HDFS ストレージの容量は、次の要因に応じて異なります。

  • コアノードに使用する EC2 インスタンスの数。

  • 使用するインスタンスタイプの EC2 インスタンスストアの容量。インスタンスストアボリュームの詳細については、Linux インスタンス用 Amazon EC2 ユーザーガイドの「Amazon EC2 インスタンスストア」を参照してください。

  • コアノードにアタッチされている EBS ボリュームの数とサイズ。

  • 各データブロックが RAID のような冗長性を実現するために HDFS に保存されている方法を説明する、レプリケーションの要因。デフォルトで、レプリケーション係数は、10 個以上のノードのクラスターで 3、4~9 個のノードのクラスターで 2、3 個以下のノードのクラスターで 1 です。

クラスターの HDFS 容量を計算するには、各コアノードで、インスタンスストアボリュームの容量を EBS ストレージ容量 (使用している場合) に追加します。計算結果にコアノードの数をかけて、その合計をコアノードの数に基づいてレプリケーション係数で割ります。たとえば、10 個のタイプ i2.xlarge のコアノードを持ち、800 GB のインスタンスストレージがあり、EBS ボリュームがアタッチされていないクラスターでは、HDFS に使用できるのは合計で約 2,666 GB です (10 ノード x 800 GB ÷ レプリケーション係数 3)。

計算された HDFS 容量の値がデータより小さい場合、次の方法で HDFS ストレージの容量を増やすことができます:

  • 追加の EBS ボリュームでクラスターを作成する、またはEBS ボリュームを既存のクラスターにアタッチしたインスタンスグループを追加する

  • より多くのコアノードを追加する

  • より大きいストレージ容量で、EC2 インスタンスタイプを選択する

  • データ圧縮を使用する

  • レプリケーション要素を減らすためにHadoop 構成設定を変更する

レプリケーション係数を減らすことは、HDFS データの冗長性や、クラスターの HDFS ブロックの損失や破損から復元する能力が低下するため、注意して使用する必要があります。