CfnEndpointConfigPropsMixin
- class aws_cdk.mixins_preview.aws_sagemaker.mixins.CfnEndpointConfigPropsMixin(props, *, strategy=None)
Bases:
MixinThe
AWS::SageMaker::EndpointConfigresource creates a configuration for an Amazon SageMaker endpoint.For more information, see CreateEndpointConfig in the SageMaker Developer Guide .
- See:
- CloudformationResource:
AWS::SageMaker::EndpointConfig
- Mixin:
true
- ExampleMetadata:
fixture=_generated
Example:
from aws_cdk import CfnTag # The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview import mixins from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins cfn_endpoint_config_props_mixin = sagemaker_mixins.CfnEndpointConfigPropsMixin(sagemaker_mixins.CfnEndpointConfigMixinProps( async_inference_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceConfigProperty( client_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceClientConfigProperty( max_concurrent_invocations_per_instance=123 ), output_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceOutputConfigProperty( kms_key_id="kmsKeyId", notification_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceNotificationConfigProperty( error_topic="errorTopic", include_inference_response_in=["includeInferenceResponseIn"], success_topic="successTopic" ), s3_failure_path="s3FailurePath", s3_output_path="s3OutputPath" ) ), data_capture_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.DataCaptureConfigProperty( capture_content_type_header=sagemaker_mixins.CfnEndpointConfigPropsMixin.CaptureContentTypeHeaderProperty( csv_content_types=["csvContentTypes"], json_content_types=["jsonContentTypes"] ), capture_options=[sagemaker_mixins.CfnEndpointConfigPropsMixin.CaptureOptionProperty( capture_mode="captureMode" )], destination_s3_uri="destinationS3Uri", enable_capture=False, initial_sampling_percentage=123, kms_key_id="kmsKeyId" ), enable_network_isolation=False, endpoint_config_name="endpointConfigName", execution_role_arn="executionRoleArn", explainer_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ExplainerConfigProperty( clarify_explainer_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyExplainerConfigProperty( enable_explanations="enableExplanations", inference_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyInferenceConfigProperty( content_template="contentTemplate", feature_headers=["featureHeaders"], features_attribute="featuresAttribute", feature_types=["featureTypes"], label_attribute="labelAttribute", label_headers=["labelHeaders"], label_index=123, max_payload_in_mb=123, max_record_count=123, probability_attribute="probabilityAttribute", probability_index=123 ), shap_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyShapConfigProperty( number_of_samples=123, seed=123, shap_baseline_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyShapBaselineConfigProperty( mime_type="mimeType", shap_baseline="shapBaseline", shap_baseline_uri="shapBaselineUri" ), text_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyTextConfigProperty( granularity="granularity", language="language" ), use_logit=False ) ) ), kms_key_id="kmsKeyId", production_variants=[sagemaker_mixins.CfnEndpointConfigPropsMixin.ProductionVariantProperty( accelerator_type="acceleratorType", capacity_reservation_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.CapacityReservationConfigProperty( capacity_reservation_preference="capacityReservationPreference", ml_reservation_arn="mlReservationArn" ), container_startup_health_check_timeout_in_seconds=123, enable_ssm_access=False, inference_ami_version="inferenceAmiVersion", initial_instance_count=123, initial_variant_weight=123, instance_type="instanceType", managed_instance_scaling=sagemaker_mixins.CfnEndpointConfigPropsMixin.ManagedInstanceScalingProperty( max_instance_count=123, min_instance_count=123, status="status" ), model_data_download_timeout_in_seconds=123, model_name="modelName", routing_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.RoutingConfigProperty( routing_strategy="routingStrategy" ), serverless_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ServerlessConfigProperty( max_concurrency=123, memory_size_in_mb=123, provisioned_concurrency=123 ), variant_name="variantName", volume_size_in_gb=123 )], shadow_production_variants=[sagemaker_mixins.CfnEndpointConfigPropsMixin.ProductionVariantProperty( accelerator_type="acceleratorType", capacity_reservation_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.CapacityReservationConfigProperty( capacity_reservation_preference="capacityReservationPreference", ml_reservation_arn="mlReservationArn" ), container_startup_health_check_timeout_in_seconds=123, enable_ssm_access=False, inference_ami_version="inferenceAmiVersion", initial_instance_count=123, initial_variant_weight=123, instance_type="instanceType", managed_instance_scaling=sagemaker_mixins.CfnEndpointConfigPropsMixin.ManagedInstanceScalingProperty( max_instance_count=123, min_instance_count=123, status="status" ), model_data_download_timeout_in_seconds=123, model_name="modelName", routing_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.RoutingConfigProperty( routing_strategy="routingStrategy" ), serverless_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ServerlessConfigProperty( max_concurrency=123, memory_size_in_mb=123, provisioned_concurrency=123 ), variant_name="variantName", volume_size_in_gb=123 )], tags=[CfnTag( key="key", value="value" )], vpc_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] ) ), strategy=mixins.PropertyMergeStrategy.OVERRIDE )
Create a mixin to apply properties to
AWS::SageMaker::EndpointConfig.- Parameters:
props (
Union[CfnEndpointConfigMixinProps,Dict[str,Any]]) – L1 properties to apply.strategy (
Optional[PropertyMergeStrategy]) – (experimental) Strategy for merging nested properties. Default: - PropertyMergeStrategy.MERGE
Methods
- apply_to(construct)
Apply the mixin properties to the construct.
- Parameters:
construct (
IConstruct)- Return type:
- supports(construct)
Check if this mixin supports the given construct.
- Parameters:
construct (
IConstruct)- Return type:
bool
Attributes
- CFN_PROPERTY_KEYS = ['asyncInferenceConfig', 'dataCaptureConfig', 'enableNetworkIsolation', 'endpointConfigName', 'executionRoleArn', 'explainerConfig', 'kmsKeyId', 'productionVariants', 'shadowProductionVariants', 'tags', 'vpcConfig']
Static Methods
- classmethod is_mixin(x)
(experimental) Checks if
xis a Mixin.- Parameters:
x (
Any) – Any object.- Return type:
bool- Returns:
true if
xis an object created from a class which extendsMixin.- Stability:
experimental
AsyncInferenceClientConfigProperty
- class CfnEndpointConfigPropsMixin.AsyncInferenceClientConfigProperty(*, max_concurrent_invocations_per_instance=None)
Bases:
objectConfigures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.
- Parameters:
max_concurrent_invocations_per_instance (
Union[int,float,None]) – The maximum number of concurrent requests sent by the SageMaker client to the model container. If no value is provided, SageMaker will choose an optimal value for you.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins async_inference_client_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceClientConfigProperty( max_concurrent_invocations_per_instance=123 )
Attributes
- max_concurrent_invocations_per_instance
The maximum number of concurrent requests sent by the SageMaker client to the model container.
If no value is provided, SageMaker will choose an optimal value for you.
AsyncInferenceConfigProperty
- class CfnEndpointConfigPropsMixin.AsyncInferenceConfigProperty(*, client_config=None, output_config=None)
Bases:
objectSpecifies configuration for how an endpoint performs asynchronous inference.
- Parameters:
client_config (
Union[IResolvable,AsyncInferenceClientConfigProperty,Dict[str,Any],None]) – Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.output_config (
Union[IResolvable,AsyncInferenceOutputConfigProperty,Dict[str,Any],None]) – Specifies the configuration for asynchronous inference invocation outputs.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins async_inference_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceConfigProperty( client_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceClientConfigProperty( max_concurrent_invocations_per_instance=123 ), output_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceOutputConfigProperty( kms_key_id="kmsKeyId", notification_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceNotificationConfigProperty( error_topic="errorTopic", include_inference_response_in=["includeInferenceResponseIn"], success_topic="successTopic" ), s3_failure_path="s3FailurePath", s3_output_path="s3OutputPath" ) )
Attributes
- client_config
Configures the behavior of the client used by SageMaker to interact with the model container during asynchronous inference.
- output_config
Specifies the configuration for asynchronous inference invocation outputs.
AsyncInferenceNotificationConfigProperty
- class CfnEndpointConfigPropsMixin.AsyncInferenceNotificationConfigProperty(*, error_topic=None, include_inference_response_in=None, success_topic=None)
Bases:
objectSpecifies the configuration for notifications of inference results for asynchronous inference.
- Parameters:
error_topic (
Optional[str]) – Amazon SNS topic to post a notification to when an inference fails. If no topic is provided, no notification is sent on failure.include_inference_response_in (
Optional[Sequence[str]]) – The Amazon SNS topics where you want the inference response to be included. .. epigraph:: The inference response is included only if the response size is less than or equal to 128 KB.success_topic (
Optional[str]) – Amazon SNS topic to post a notification to when an inference completes successfully. If no topic is provided, no notification is sent on success.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins async_inference_notification_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceNotificationConfigProperty( error_topic="errorTopic", include_inference_response_in=["includeInferenceResponseIn"], success_topic="successTopic" )
Attributes
- error_topic
Amazon SNS topic to post a notification to when an inference fails.
If no topic is provided, no notification is sent on failure.
- include_inference_response_in
The Amazon SNS topics where you want the inference response to be included.
The inference response is included only if the response size is less than or equal to 128 KB.
- success_topic
Amazon SNS topic to post a notification to when an inference completes successfully.
If no topic is provided, no notification is sent on success.
AsyncInferenceOutputConfigProperty
- class CfnEndpointConfigPropsMixin.AsyncInferenceOutputConfigProperty(*, kms_key_id=None, notification_config=None, s3_failure_path=None, s3_output_path=None)
Bases:
objectSpecifies the configuration for asynchronous inference invocation outputs.
- Parameters:
kms_key_id (
Optional[str]) – The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the asynchronous inference output in Amazon S3.notification_config (
Union[IResolvable,AsyncInferenceNotificationConfigProperty,Dict[str,Any],None]) – Specifies the configuration for notifications of inference results for asynchronous inference.s3_failure_path (
Optional[str]) – The Amazon S3 location to upload failure inference responses to.s3_output_path (
Optional[str]) – The Amazon S3 location to upload inference responses to.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins async_inference_output_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceOutputConfigProperty( kms_key_id="kmsKeyId", notification_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.AsyncInferenceNotificationConfigProperty( error_topic="errorTopic", include_inference_response_in=["includeInferenceResponseIn"], success_topic="successTopic" ), s3_failure_path="s3FailurePath", s3_output_path="s3OutputPath" )
Attributes
- kms_key_id
The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the asynchronous inference output in Amazon S3.
- notification_config
Specifies the configuration for notifications of inference results for asynchronous inference.
- s3_failure_path
The Amazon S3 location to upload failure inference responses to.
- s3_output_path
The Amazon S3 location to upload inference responses to.
CapacityReservationConfigProperty
- class CfnEndpointConfigPropsMixin.CapacityReservationConfigProperty(*, capacity_reservation_preference=None, ml_reservation_arn=None)
Bases:
object- Parameters:
capacity_reservation_preference (
Optional[str])ml_reservation_arn (
Optional[str])
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins capacity_reservation_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.CapacityReservationConfigProperty( capacity_reservation_preference="capacityReservationPreference", ml_reservation_arn="mlReservationArn" )
Attributes
- capacity_reservation_preference
-
- Type:
see
CaptureContentTypeHeaderProperty
- class CfnEndpointConfigPropsMixin.CaptureContentTypeHeaderProperty(*, csv_content_types=None, json_content_types=None)
Bases:
objectSpecifies the JSON and CSV content types of the data that the endpoint captures.
- Parameters:
csv_content_types (
Optional[Sequence[str]]) – A list of the CSV content types of the data that the endpoint captures. For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.json_content_types (
Optional[Sequence[str]]) – A list of the JSON content types of the data that the endpoint captures. For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins capture_content_type_header_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.CaptureContentTypeHeaderProperty( csv_content_types=["csvContentTypes"], json_content_types=["jsonContentTypes"] )
Attributes
- csv_content_types
A list of the CSV content types of the data that the endpoint captures.
For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.
- json_content_types
A list of the JSON content types of the data that the endpoint captures.
For the endpoint to capture the data, you must also specify the content type when you invoke the endpoint.
CaptureOptionProperty
- class CfnEndpointConfigPropsMixin.CaptureOptionProperty(*, capture_mode=None)
Bases:
objectSpecifies whether the endpoint captures input data or output data.
- Parameters:
capture_mode (
Optional[str]) – Specifies whether the endpoint captures input data or output data.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins capture_option_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.CaptureOptionProperty( capture_mode="captureMode" )
Attributes
- capture_mode
Specifies whether the endpoint captures input data or output data.
ClarifyExplainerConfigProperty
- class CfnEndpointConfigPropsMixin.ClarifyExplainerConfigProperty(*, enable_explanations=None, inference_config=None, shap_config=None)
Bases:
objectThe configuration parameters for the SageMaker Clarify explainer.
- Parameters:
enable_explanations (
Optional[str]) – A JMESPath boolean expression used to filter which records to explain. Explanations are activated by default. See`EnableExplanations<https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable>`_ for additional information.inference_config (
Union[IResolvable,ClarifyInferenceConfigProperty,Dict[str,Any],None]) – The inference configuration parameter for the model container.shap_config (
Union[IResolvable,ClarifyShapConfigProperty,Dict[str,Any],None]) – The configuration for SHAP analysis.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins clarify_explainer_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyExplainerConfigProperty( enable_explanations="enableExplanations", inference_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyInferenceConfigProperty( content_template="contentTemplate", feature_headers=["featureHeaders"], features_attribute="featuresAttribute", feature_types=["featureTypes"], label_attribute="labelAttribute", label_headers=["labelHeaders"], label_index=123, max_payload_in_mb=123, max_record_count=123, probability_attribute="probabilityAttribute", probability_index=123 ), shap_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyShapConfigProperty( number_of_samples=123, seed=123, shap_baseline_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyShapBaselineConfigProperty( mime_type="mimeType", shap_baseline="shapBaseline", shap_baseline_uri="shapBaselineUri" ), text_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyTextConfigProperty( granularity="granularity", language="language" ), use_logit=False ) )
Attributes
- enable_explanations
A JMESPath boolean expression used to filter which records to explain.
Explanations are activated by default. See
`EnableExplanations<https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-online-explainability-create-endpoint.html#clarify-online-explainability-create-endpoint-enable>`_ for additional information.
- inference_config
The inference configuration parameter for the model container.
- shap_config
The configuration for SHAP analysis.
ClarifyInferenceConfigProperty
- class CfnEndpointConfigPropsMixin.ClarifyInferenceConfigProperty(*, content_template=None, feature_headers=None, features_attribute=None, feature_types=None, label_attribute=None, label_headers=None, label_index=None, max_payload_in_mb=None, max_record_count=None, probability_attribute=None, probability_index=None)
Bases:
objectThe inference configuration parameter for the model container.
- Parameters:
content_template (
Optional[str]) – A template string used to format a JSON record into an acceptable model container input. For example, aContentTemplatestring'{"myfeatures":$features}'will format a list of features[1,2,3]into the record string'{"myfeatures":[1,2,3]}'. Required only when the model container input is in JSON Lines format.feature_headers (
Optional[Sequence[str]]) – The names of the features. If provided, these are included in the endpoint response payload to help readability of theInvokeEndpointoutput. See the Response section under Invoke the endpoint in the Developer Guide for more information.features_attribute (
Optional[str]) – Provides the JMESPath expression to extract the features from a model container input in JSON Lines format. For example, ifFeaturesAttributeis the JMESPath expression'myfeatures', it extracts a list of features[1,2,3]from request data'{"myfeatures":[1,2,3]}'.feature_types (
Optional[Sequence[str]]) –A list of data types of the features (optional). Applicable only to NLP explainability. If provided,
FeatureTypesmust have at least one'text'string (for example,['text']). IfFeatureTypesis not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.label_attribute (
Optional[str]) – A JMESPath expression used to locate the list of label headers in the model container output. Example : If the model container output of a batch request is'{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then setLabelAttributeto'labels'to extract the list of label headers["cat","dog","fish"]label_headers (
Optional[Sequence[str]]) –For multiclass classification problems, the label headers are the names of the classes. Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the
InvokeEndpointAPI. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.label_index (
Union[int,float,None]) – A zero-based index used to extract a label header or list of label headers from model container output in CSV format. Example for a multiclass model: If the model container output consists of label headers followed by probabilities:'"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', setLabelIndexto0to select the label headers['cat','dog','fish'].max_payload_in_mb (
Union[int,float,None]) – The maximum payload size (MB) allowed of a request from the explainer to the model container. Defaults to6MB.max_record_count (
Union[int,float,None]) – The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset . A record is a unit of input data that inference can be made on, for example, a single line in CSV data. IfMaxRecordCountis1, the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container’s capacity at runtime.probability_attribute (
Optional[str]) – A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format. Example : If the model container output of a single request is'{"predicted_label":1,"probability":0.6}', then setProbabilityAttributeto'probability'.probability_index (
Union[int,float,None]) – A zero-based index used to extract a probability value (score) or list from model container output in CSV format. If this value is not provided, the entire model container output will be treated as a probability value (score) or list. Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability:'1,0.6', setProbabilityIndexto1to select the probability value0.6. Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability:'"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', setProbabilityIndexto1to select the probability values[0.1,0.6,0.3].
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins clarify_inference_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyInferenceConfigProperty( content_template="contentTemplate", feature_headers=["featureHeaders"], features_attribute="featuresAttribute", feature_types=["featureTypes"], label_attribute="labelAttribute", label_headers=["labelHeaders"], label_index=123, max_payload_in_mb=123, max_record_count=123, probability_attribute="probabilityAttribute", probability_index=123 )
Attributes
- content_template
A template string used to format a JSON record into an acceptable model container input.
For example, a
ContentTemplatestring'{"myfeatures":$features}'will format a list of features[1,2,3]into the record string'{"myfeatures":[1,2,3]}'. Required only when the model container input is in JSON Lines format.
- feature_headers
The names of the features.
If provided, these are included in the endpoint response payload to help readability of the
InvokeEndpointoutput. See the Response section under Invoke the endpoint in the Developer Guide for more information.
- feature_types
A list of data types of the features (optional).
Applicable only to NLP explainability. If provided,
FeatureTypesmust have at least one'text'string (for example,['text']). IfFeatureTypesis not provided, the explainer infers the feature types based on the baseline data. The feature types are included in the endpoint response payload. For additional information see the response section under Invoke the endpoint in the Developer Guide for more information.
- features_attribute
Provides the JMESPath expression to extract the features from a model container input in JSON Lines format.
For example, if
FeaturesAttributeis the JMESPath expression'myfeatures', it extracts a list of features[1,2,3]from request data'{"myfeatures":[1,2,3]}'.
- label_attribute
A JMESPath expression used to locate the list of label headers in the model container output.
Example : If the model container output of a batch request is
'{"labels":["cat","dog","fish"],"probability":[0.6,0.3,0.1]}', then setLabelAttributeto'labels'to extract the list of label headers["cat","dog","fish"]
- label_headers
For multiclass classification problems, the label headers are the names of the classes.
Otherwise, the label header is the name of the predicted label. These are used to help readability for the output of the
InvokeEndpointAPI. See the response section under Invoke the endpoint in the Developer Guide for more information. If there are no label headers in the model container output, provide them manually using this parameter.
- label_index
A zero-based index used to extract a label header or list of label headers from model container output in CSV format.
Example for a multiclass model: If the model container output consists of label headers followed by probabilities:
'"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', setLabelIndexto0to select the label headers['cat','dog','fish'].
- max_payload_in_mb
The maximum payload size (MB) allowed of a request from the explainer to the model container.
Defaults to
6MB.
- max_record_count
The maximum number of records in a request that the model container can process when querying the model container for the predictions of a synthetic dataset . A record is a unit of input data that inference can be made on, for example, a single line in CSV data. If
MaxRecordCountis1, the model container expects one record per request. A value of 2 or greater means that the model expects batch requests, which can reduce overhead and speed up the inferencing process. If this parameter is not provided, the explainer will tune the record count per request according to the model container’s capacity at runtime.
- probability_attribute
A JMESPath expression used to extract the probability (or score) from the model container output if the model container is in JSON Lines format.
Example : If the model container output of a single request is
'{"predicted_label":1,"probability":0.6}', then setProbabilityAttributeto'probability'.
- probability_index
A zero-based index used to extract a probability value (score) or list from model container output in CSV format.
If this value is not provided, the entire model container output will be treated as a probability value (score) or list.
Example for a single class model: If the model container output consists of a string-formatted prediction label followed by its probability:
'1,0.6', setProbabilityIndexto1to select the probability value0.6.Example for a multiclass model: If the model container output consists of a string-formatted prediction label followed by its probability:
'"[\'cat\',\'dog\',\'fish\']","[0.1,0.6,0.3]"', setProbabilityIndexto1to select the probability values[0.1,0.6,0.3].
ClarifyShapBaselineConfigProperty
- class CfnEndpointConfigPropsMixin.ClarifyShapBaselineConfigProperty(*, mime_type=None, shap_baseline=None, shap_baseline_uri=None)
Bases:
objectThe configuration for the SHAP baseline (also called the background or reference dataset) of the Kernal SHAP algorithm.
The number of records in the baseline data determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint .
ShapBaselineandShapBaselineUriare mutually exclusive parameters. One or the either is required to configure a SHAP baseline.
- Parameters:
mime_type (
Optional[str]) – The MIME type of the baseline data. Choose from'text/csv'or'application/jsonlines'. Defaults to'text/csv'.shap_baseline (
Optional[str]) – The inline SHAP baseline data in string format.ShapBaselinecan have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by theGranularityof theTextConfigparameter. The size limit forShapBaslineis 4 KB. Use theShapBaselineUriparameter if you want to provide more than 4 KB of baseline data.shap_baseline_uri (
Optional[str]) – The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored. The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), theShapBaselineUrishould be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud .
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins clarify_shap_baseline_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyShapBaselineConfigProperty( mime_type="mimeType", shap_baseline="shapBaseline", shap_baseline_uri="shapBaselineUri" )
Attributes
- mime_type
The MIME type of the baseline data.
Choose from
'text/csv'or'application/jsonlines'. Defaults to'text/csv'.
- shap_baseline
The inline SHAP baseline data in string format.
ShapBaselinecan have one or multiple records to be used as the baseline dataset. The format of the SHAP baseline file should be the same format as the training dataset. For example, if the training dataset is in CSV format and each record contains four features, and all features are numerical, then the format of the baseline data should also share these characteristics. For natural language processing (NLP) of text columns, the baseline value should be the value used to replace the unit of text specified by theGranularityof theTextConfigparameter. The size limit forShapBaslineis 4 KB. Use theShapBaselineUriparameter if you want to provide more than 4 KB of baseline data.
- shap_baseline_uri
The uniform resource identifier (URI) of the S3 bucket where the SHAP baseline file is stored.
The format of the SHAP baseline file should be the same format as the format of the training dataset. For example, if the training dataset is in CSV format, and each record in the training dataset has four features, and all features are numerical, then the baseline file should also have this same format. Each record should contain only the features. If you are using a virtual private cloud (VPC), the
ShapBaselineUrishould be accessible to the VPC. For more information about setting up endpoints with Amazon Virtual Private Cloud, see Give SageMaker access to Resources in your Amazon Virtual Private Cloud .
ClarifyShapConfigProperty
- class CfnEndpointConfigPropsMixin.ClarifyShapConfigProperty(*, number_of_samples=None, seed=None, shap_baseline_config=None, text_config=None, use_logit=None)
Bases:
objectThe configuration for SHAP analysis using SageMaker Clarify Explainer.
- Parameters:
number_of_samples (
Union[int,float,None]) –The number of samples to be used for analysis by the Kernal SHAP algorithm. .. epigraph:: The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint .
seed (
Union[int,float,None]) – The starting value used to initialize the random number generator in the explainer. Provide a value for this parameter to obtain a deterministic SHAP result.shap_baseline_config (
Union[IResolvable,ClarifyShapBaselineConfigProperty,Dict[str,Any],None]) – The configuration for the SHAP baseline of the Kernal SHAP algorithm.text_config (
Union[IResolvable,ClarifyTextConfigProperty,Dict[str,Any],None]) – A parameter that indicates if text features are treated as text and explanations are provided for individual units of text. Required for natural language processing (NLP) explainability only.use_logit (
Union[bool,IResolvable,None]) – A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions. Defaults to false.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins clarify_shap_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyShapConfigProperty( number_of_samples=123, seed=123, shap_baseline_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyShapBaselineConfigProperty( mime_type="mimeType", shap_baseline="shapBaseline", shap_baseline_uri="shapBaselineUri" ), text_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyTextConfigProperty( granularity="granularity", language="language" ), use_logit=False )
Attributes
- number_of_samples
The number of samples to be used for analysis by the Kernal SHAP algorithm.
The number of samples determines the size of the synthetic dataset, which has an impact on latency of explainability requests. For more information, see the Synthetic data of Configure and create an endpoint .
- seed
The starting value used to initialize the random number generator in the explainer.
Provide a value for this parameter to obtain a deterministic SHAP result.
- shap_baseline_config
The configuration for the SHAP baseline of the Kernal SHAP algorithm.
- text_config
A parameter that indicates if text features are treated as text and explanations are provided for individual units of text.
Required for natural language processing (NLP) explainability only.
- use_logit
A Boolean toggle to indicate if you want to use the logit function (true) or log-odds units (false) for model predictions.
Defaults to false.
ClarifyTextConfigProperty
- class CfnEndpointConfigPropsMixin.ClarifyTextConfigProperty(*, granularity=None, language=None)
Bases:
objectA parameter used to configure the SageMaker Clarify explainer to treat text features as text so that explanations are provided for individual units of text.
Required only for natural language processing (NLP) explainability.
- Parameters:
granularity (
Optional[str]) – The unit of granularity for the analysis of text features. For example, if the unit is'token', then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.language (
Optional[str]) – Specifies the language of the text features in [ISO 639-1](https://docs.aws.amazon.com/ https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) or ISO 639-3 code of a supported language. .. epigraph:: For a mix of multiple languages, use code'xx'.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins clarify_text_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyTextConfigProperty( granularity="granularity", language="language" )
Attributes
- granularity
The unit of granularity for the analysis of text features.
For example, if the unit is
'token', then each token (like a word in English) of the text is treated as a feature. SHAP values are computed for each unit/feature.
DataCaptureConfigProperty
- class CfnEndpointConfigPropsMixin.DataCaptureConfigProperty(*, capture_content_type_header=None, capture_options=None, destination_s3_uri=None, enable_capture=None, initial_sampling_percentage=None, kms_key_id=None)
Bases:
objectSpecifies the configuration of your endpoint for model monitor data capture.
- Parameters:
capture_content_type_header (
Union[IResolvable,CaptureContentTypeHeaderProperty,Dict[str,Any],None]) – A list of the JSON and CSV content type that the endpoint captures.capture_options (
Union[IResolvable,Sequence[Union[IResolvable,CaptureOptionProperty,Dict[str,Any]]],None]) – Specifies whether the endpoint captures input data to your model, output data from your model, or both.destination_s3_uri (
Optional[str]) – The S3 bucket where model monitor stores captured data.enable_capture (
Union[bool,IResolvable,None]) – Set toTrueto enable data capture.initial_sampling_percentage (
Union[int,float,None]) – The percentage of data to capture.kms_key_id (
Optional[str]) – The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption. The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateModel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html) request. For more information, see Using Key Policies in AWS KMS (http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) in the AWS Key Management Service Developer Guide.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins data_capture_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.DataCaptureConfigProperty( capture_content_type_header=sagemaker_mixins.CfnEndpointConfigPropsMixin.CaptureContentTypeHeaderProperty( csv_content_types=["csvContentTypes"], json_content_types=["jsonContentTypes"] ), capture_options=[sagemaker_mixins.CfnEndpointConfigPropsMixin.CaptureOptionProperty( capture_mode="captureMode" )], destination_s3_uri="destinationS3Uri", enable_capture=False, initial_sampling_percentage=123, kms_key_id="kmsKeyId" )
Attributes
- capture_content_type_header
A list of the JSON and CSV content type that the endpoint captures.
- capture_options
Specifies whether the endpoint captures input data to your model, output data from your model, or both.
- destination_s3_uri
The S3 bucket where model monitor stores captured data.
- enable_capture
Set to
Trueto enable data capture.
- initial_sampling_percentage
The percentage of data to capture.
- kms_key_id
The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt the captured data at rest using Amazon S3 server-side encryption.
The KmsKeyId can be any of the following formats: Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab Key ARN: arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab Alias name: alias/ExampleAlias Alias name ARN: arn:aws:kms:us-west-2:111122223333:alias/ExampleAlias If you don’t provide a KMS key ID, Amazon SageMaker uses the default KMS key for Amazon S3 for your role’s account. For more information, see KMS-Managed Encryption Keys (https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html) in the Amazon Simple Storage Service Developer Guide. The KMS key policy must grant permission to the IAM role that you specify in your CreateModel (https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateModel.html) request. For more information, see Using Key Policies in AWS KMS (http://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html) in the AWS Key Management Service Developer Guide.
ExplainerConfigProperty
- class CfnEndpointConfigPropsMixin.ExplainerConfigProperty(*, clarify_explainer_config=None)
Bases:
objectA parameter to activate explainers.
- Parameters:
clarify_explainer_config (
Union[IResolvable,ClarifyExplainerConfigProperty,Dict[str,Any],None]) – A member ofExplainerConfigthat contains configuration parameters for the SageMaker Clarify explainer.- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins explainer_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.ExplainerConfigProperty( clarify_explainer_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyExplainerConfigProperty( enable_explanations="enableExplanations", inference_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyInferenceConfigProperty( content_template="contentTemplate", feature_headers=["featureHeaders"], features_attribute="featuresAttribute", feature_types=["featureTypes"], label_attribute="labelAttribute", label_headers=["labelHeaders"], label_index=123, max_payload_in_mb=123, max_record_count=123, probability_attribute="probabilityAttribute", probability_index=123 ), shap_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyShapConfigProperty( number_of_samples=123, seed=123, shap_baseline_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyShapBaselineConfigProperty( mime_type="mimeType", shap_baseline="shapBaseline", shap_baseline_uri="shapBaselineUri" ), text_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ClarifyTextConfigProperty( granularity="granularity", language="language" ), use_logit=False ) ) )
Attributes
- clarify_explainer_config
A member of
ExplainerConfigthat contains configuration parameters for the SageMaker Clarify explainer.
ManagedInstanceScalingProperty
- class CfnEndpointConfigPropsMixin.ManagedInstanceScalingProperty(*, max_instance_count=None, min_instance_count=None, status=None)
Bases:
object- Parameters:
max_instance_count (
Union[int,float,None])min_instance_count (
Union[int,float,None])status (
Optional[str])
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins managed_instance_scaling_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.ManagedInstanceScalingProperty( max_instance_count=123, min_instance_count=123, status="status" )
Attributes
- max_instance_count
-
- Type:
see
- min_instance_count
-
- Type:
see
ProductionVariantProperty
- class CfnEndpointConfigPropsMixin.ProductionVariantProperty(*, accelerator_type=None, capacity_reservation_config=None, container_startup_health_check_timeout_in_seconds=None, enable_ssm_access=None, inference_ami_version=None, initial_instance_count=None, initial_variant_weight=None, instance_type=None, managed_instance_scaling=None, model_data_download_timeout_in_seconds=None, model_name=None, routing_config=None, serverless_config=None, variant_name=None, volume_size_in_gb=None)
Bases:
objectSpecifies a model that you want to host and the resources to deploy for hosting it.
If you are deploying multiple models, tell Amazon SageMaker how to distribute traffic among the models by specifying the
InitialVariantWeightobjects.- Parameters:
accelerator_type (
Optional[str]) –The size of the Elastic Inference (EI) instance to use for the production variant. EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker . For more information, see Using Elastic Inference in Amazon SageMaker .
capacity_reservation_config (
Union[IResolvable,CapacityReservationConfigProperty,Dict[str,Any],None])container_startup_health_check_timeout_in_seconds (
Union[int,float,None]) – The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting. For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests .enable_ssm_access (
Union[bool,IResolvable,None]) – You can use this parameter to turn on native AWS Systems Manager (SSM) access for a production variant behind an endpoint. By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and callingUpdateEndpoint.inference_ami_version (
Optional[str])initial_instance_count (
Union[int,float,None]) – Number of instances to launch initially.initial_variant_weight (
Union[int,float,None]) – Determines initial traffic distribution among all of the models that you specify in the endpoint configuration. The traffic to a production variant is determined by the ratio of theVariantWeightto the sum of allVariantWeightvalues across all ProductionVariants. If unspecified, it defaults to 1.0.instance_type (
Optional[str]) – The ML compute instance type.managed_instance_scaling (
Union[IResolvable,ManagedInstanceScalingProperty,Dict[str,Any],None])model_data_download_timeout_in_seconds (
Union[int,float,None]) – The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.model_name (
Optional[str]) – The name of the model that you want to host. This is the name that you specified when creating the model.routing_config (
Union[IResolvable,RoutingConfigProperty,Dict[str,Any],None])serverless_config (
Union[IResolvable,ServerlessConfigProperty,Dict[str,Any],None]) – The serverless configuration for an endpoint. Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.variant_name (
Optional[str]) – The name of the production variant.volume_size_in_gb (
Union[int,float,None]) – The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant. Currently only Amazon EBS gp2 storage volumes are supported.
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins production_variant_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.ProductionVariantProperty( accelerator_type="acceleratorType", capacity_reservation_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.CapacityReservationConfigProperty( capacity_reservation_preference="capacityReservationPreference", ml_reservation_arn="mlReservationArn" ), container_startup_health_check_timeout_in_seconds=123, enable_ssm_access=False, inference_ami_version="inferenceAmiVersion", initial_instance_count=123, initial_variant_weight=123, instance_type="instanceType", managed_instance_scaling=sagemaker_mixins.CfnEndpointConfigPropsMixin.ManagedInstanceScalingProperty( max_instance_count=123, min_instance_count=123, status="status" ), model_data_download_timeout_in_seconds=123, model_name="modelName", routing_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.RoutingConfigProperty( routing_strategy="routingStrategy" ), serverless_config=sagemaker_mixins.CfnEndpointConfigPropsMixin.ServerlessConfigProperty( max_concurrency=123, memory_size_in_mb=123, provisioned_concurrency=123 ), variant_name="variantName", volume_size_in_gb=123 )
Attributes
- accelerator_type
The size of the Elastic Inference (EI) instance to use for the production variant.
EI instances provide on-demand GPU computing for inference. For more information, see Using Elastic Inference in Amazon SageMaker . For more information, see Using Elastic Inference in Amazon SageMaker .
- capacity_reservation_config
-
- Type:
see
- container_startup_health_check_timeout_in_seconds
The timeout value, in seconds, for your inference container to pass health check by SageMaker Hosting.
For more information about health check, see How Your Container Should Respond to Health Check (Ping) Requests .
- enable_ssm_access
You can use this parameter to turn on native AWS Systems Manager (SSM) access for a production variant behind an endpoint.
By default, SSM access is disabled for all production variants behind an endpoint. You can turn on or turn off SSM access for a production variant behind an existing endpoint by creating a new endpoint configuration and calling
UpdateEndpoint.
- inference_ami_version
-
- Type:
see
- initial_instance_count
Number of instances to launch initially.
- initial_variant_weight
Determines initial traffic distribution among all of the models that you specify in the endpoint configuration.
The traffic to a production variant is determined by the ratio of the
VariantWeightto the sum of allVariantWeightvalues across all ProductionVariants. If unspecified, it defaults to 1.0.
- instance_type
The ML compute instance type.
- managed_instance_scaling
-
- Type:
see
- model_data_download_timeout_in_seconds
The timeout value, in seconds, to download and extract the model that you want to host from Amazon S3 to the individual inference instance associated with this production variant.
- model_name
The name of the model that you want to host.
This is the name that you specified when creating the model.
- routing_config
-
- Type:
see
- serverless_config
The serverless configuration for an endpoint.
Specifies a serverless endpoint configuration instead of an instance-based endpoint configuration.
- variant_name
The name of the production variant.
- volume_size_in_gb
The size, in GB, of the ML storage volume attached to individual inference instance associated with the production variant.
Currently only Amazon EBS gp2 storage volumes are supported.
RoutingConfigProperty
- class CfnEndpointConfigPropsMixin.RoutingConfigProperty(*, routing_strategy=None)
Bases:
object- Parameters:
routing_strategy (
Optional[str])- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins routing_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.RoutingConfigProperty( routing_strategy="routingStrategy" )
Attributes
ServerlessConfigProperty
- class CfnEndpointConfigPropsMixin.ServerlessConfigProperty(*, max_concurrency=None, memory_size_in_mb=None, provisioned_concurrency=None)
Bases:
objectSpecifies the serverless configuration for an endpoint variant.
- Parameters:
max_concurrency (
Union[int,float,None]) – The maximum number of concurrent invocations your serverless endpoint can process.memory_size_in_mb (
Union[int,float,None]) – The memory size of your serverless endpoint. Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.provisioned_concurrency (
Union[int,float,None]) – The amount of provisioned concurrency to allocate for the serverless endpoint. Should be less than or equal toMaxConcurrency. .. epigraph:: This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see CreateInferenceRecommendationsJobs .
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins serverless_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.ServerlessConfigProperty( max_concurrency=123, memory_size_in_mb=123, provisioned_concurrency=123 )
Attributes
- max_concurrency
The maximum number of concurrent invocations your serverless endpoint can process.
- memory_size_in_mb
The memory size of your serverless endpoint.
Valid values are in 1 GB increments: 1024 MB, 2048 MB, 3072 MB, 4096 MB, 5120 MB, or 6144 MB.
- provisioned_concurrency
The amount of provisioned concurrency to allocate for the serverless endpoint.
Should be less than or equal to
MaxConcurrency. .. epigraph:This field is not supported for serverless endpoint recommendations for Inference Recommender jobs. For more information about creating an Inference Recommender job, see `CreateInferenceRecommendationsJobs <https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_CreateInferenceRecommendationsJob.html>`_ .
VpcConfigProperty
- class CfnEndpointConfigPropsMixin.VpcConfigProperty(*, security_group_ids=None, subnets=None)
Bases:
object- Parameters:
security_group_ids (
Optional[Sequence[str]])subnets (
Optional[Sequence[str]])
- See:
- ExampleMetadata:
fixture=_generated
Example:
# The code below shows an example of how to instantiate this type. # The values are placeholders you should change. from aws_cdk.mixins_preview.aws_sagemaker import mixins as sagemaker_mixins vpc_config_property = sagemaker_mixins.CfnEndpointConfigPropsMixin.VpcConfigProperty( security_group_ids=["securityGroupIds"], subnets=["subnets"] )
Attributes
- security_group_ids
-
- Type:
see