interface ClusterConfigProperty
Language | Type name |
---|---|
.NET | Amazon.CDK.AWS.Sagemaker.CfnMonitoringSchedule.ClusterConfigProperty |
Go | github.com/aws/aws-cdk-go/awscdk/v2/awssagemaker#CfnMonitoringSchedule_ClusterConfigProperty |
Java | software.amazon.awscdk.services.sagemaker.CfnMonitoringSchedule.ClusterConfigProperty |
Python | aws_cdk.aws_sagemaker.CfnMonitoringSchedule.ClusterConfigProperty |
TypeScript | aws-cdk-lib » aws_sagemaker » CfnMonitoringSchedule » ClusterConfigProperty |
Configuration for the cluster used to run model monitoring jobs.
Example
// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
import { aws_sagemaker as sagemaker } from 'aws-cdk-lib';
const clusterConfigProperty: sagemaker.CfnMonitoringSchedule.ClusterConfigProperty = {
instanceCount: 123,
instanceType: 'instanceType',
volumeSizeInGb: 123,
// the properties below are optional
volumeKmsKeyId: 'volumeKmsKeyId',
};
Properties
Name | Type | Description |
---|---|---|
instance | number | The number of ML compute instances to use in the model monitoring job. |
instance | string | The ML compute instance type for the processing job. |
volume | number | The size of the ML storage volume, in gigabytes, that you want to provision. |
volume | string | The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job. |
instanceCount
Type:
number
The number of ML compute instances to use in the model monitoring job.
For distributed processing jobs, specify a value greater than 1. The default value is 1.
instanceType
Type:
string
The ML compute instance type for the processing job.
volumeSizeInGb
Type:
number
The size of the ML storage volume, in gigabytes, that you want to provision.
You must specify sufficient ML storage for your scenario.
volumeKmsKeyId?
Type:
string
(optional)
The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.