interface ClusterConfigProperty
| Language | Type name |
|---|---|
.NET | Amazon.CDK.AWS.Sagemaker.CfnMonitoringSchedule.ClusterConfigProperty |
Go | github.com/aws/aws-cdk-go/awscdk/v2/awssagemaker#CfnMonitoringSchedule_ClusterConfigProperty |
Java | software.amazon.awscdk.services.sagemaker.CfnMonitoringSchedule.ClusterConfigProperty |
Python | aws_cdk.aws_sagemaker.CfnMonitoringSchedule.ClusterConfigProperty |
TypeScript | aws-cdk-lib » aws_sagemaker » CfnMonitoringSchedule » ClusterConfigProperty |
Configuration for the cluster used to run model monitoring jobs.
Example
// The code below shows an example of how to instantiate this type.
// The values are placeholders you should change.
import { aws_sagemaker as sagemaker } from 'aws-cdk-lib';
const clusterConfigProperty: sagemaker.CfnMonitoringSchedule.ClusterConfigProperty = {
instanceCount: 123,
instanceType: 'instanceType',
volumeSizeInGb: 123,
// the properties below are optional
volumeKmsKeyId: 'volumeKmsKeyId',
};
Properties
| Name | Type | Description |
|---|---|---|
| instance | number | The number of ML compute instances to use in the model monitoring job. |
| instance | string | The ML compute instance type for the processing job. |
| volume | number | The size of the ML storage volume, in gigabytes, that you want to provision. |
| volume | string | The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job. |
instanceCount
Type:
number
The number of ML compute instances to use in the model monitoring job.
For distributed processing jobs, specify a value greater than 1. The default value is 1.
instanceType
Type:
string
The ML compute instance type for the processing job.
volumeSizeInGb
Type:
number
The size of the ML storage volume, in gigabytes, that you want to provision.
You must specify sufficient ML storage for your scenario.
volumeKmsKeyId?
Type:
string
(optional)
The AWS Key Management Service ( AWS KMS) key that Amazon SageMaker uses to encrypt data on the storage volume attached to the ML compute instance(s) that run the model monitoring job.

.NET
Go
Java
Python
TypeScript