Wählen Sie Ihre Cookie-Einstellungen aus

Wir verwenden essentielle Cookies und ähnliche Tools, die für die Bereitstellung unserer Website und Services erforderlich sind. Wir verwenden Performance-Cookies, um anonyme Statistiken zu sammeln, damit wir verstehen können, wie Kunden unsere Website nutzen, und Verbesserungen vornehmen können. Essentielle Cookies können nicht deaktiviert werden, aber Sie können auf „Anpassen“ oder „Ablehnen“ klicken, um Performance-Cookies abzulehnen.

Wenn Sie damit einverstanden sind, verwenden AWS und zugelassene Drittanbieter auch Cookies, um nützliche Features der Website bereitzustellen, Ihre Präferenzen zu speichern und relevante Inhalte, einschließlich relevanter Werbung, anzuzeigen. Um alle nicht notwendigen Cookies zu akzeptieren oder abzulehnen, klicken Sie auf „Akzeptieren“ oder „Ablehnen“. Um detailliertere Entscheidungen zu treffen, klicken Sie auf „Anpassen“.

Jensen-Shannon-Divergenz (JS)

Fokusmodus
Jensen-Shannon-Divergenz (JS) - Amazon SageMaker KI

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.

Die Jensen-Shannon-Divergenz (JS) misst, wie stark die Beschriftungsverteilungen verschiedener Facetten entropisch voneinander abweichen. Sie basiert auf der Kullback-Leibler-Divergenz, ist aber symmetrisch.

Die Formel für die Jensen-Shannon-Divergenz lautet wie folgt:

        JS = ½ * [KL (Pa || P) + KL (P || Pd)]

Dabei ist P = ½ (Pa + Pd), die durchschnittliche Labelverteilung über die Facetten a und d.

Der Bereich der JS-Werte für binäre, kontinuierliche Ergebnisse mit mehreren Kategorien ist [0, ln (2)).

  • Werte nahe Null bedeuten, dass die Beschriftungen ähnlich verteilt sind.

  • Positive Werte bedeuten, dass die Labelverteilungen divergieren. Je positiver, desto größer die Divergenz.

Diese Metrik gibt an, ob bei einem der Beschriftungen in Bezug auf die Facetten eine große Divergenz besteht.

DatenschutzNutzungsbedingungen für die WebsiteCookie-Einstellungen
© 2025, Amazon Web Services, Inc. oder Tochtergesellschaften. Alle Rechte vorbehalten.