Die vorliegende Übersetzung wurde maschinell erstellt. Im Falle eines Konflikts oder eines Widerspruchs zwischen dieser übersetzten Fassung und der englischen Fassung (einschließlich infolge von Verzögerungen bei der Übersetzung) ist die englische Fassung maßgeblich.
Sie können den integrierten Algorithmus von Amazon SageMaker AI verwenden TabTransformer . Im folgenden Abschnitt wird die Verwendung TabTransformer mit dem SageMaker Python-SDK beschrieben. Informationen zur Verwendung TabTransformer von der Amazon SageMaker Studio Classic-Benutzeroberfläche aus finden Sie unterSageMaker JumpStart vortrainierte Modelle.
-
TabTransformer Als integrierten Algorithmus verwenden
Verwenden Sie den TabTransformer integrierten Algorithmus, um einen TabTransformer Trainingscontainer zu erstellen, wie im folgenden Codebeispiel gezeigt. Sie können den TabTransformer integrierten Algorithmus-Image-URI mithilfe der SageMaker
image_uris.retrieve
KI-API (oder derget_image_uri
API, wenn Sie Amazon SageMaker Python SDKVersion 2 verwenden) automatisch erkennen. Nachdem Sie die TabTransformer Bild-URI angegeben haben, können Sie den TabTransformer Container verwenden, um mithilfe der SageMaker AI Estimator API einen Schätzer zu erstellen und einen Trainingsjob zu starten. Der TabTransformer integrierte Algorithmus wird im Skriptmodus ausgeführt, aber das Trainingsskript wird für Sie bereitgestellt und muss nicht ersetzt werden. Wenn Sie umfangreiche Erfahrung mit der Erstellung eines SageMaker Trainingsjobs im Skriptmodus haben, können Sie Ihre eigenen TabTransformer Trainingsskripte integrieren.
from sagemaker import image_uris, model_uris, script_uris train_model_id, train_model_version, train_scope = "pytorch-tabtransformerclassification-model", "*", "training" training_instance_type = "ml.p3.2xlarge" # Retrieve the docker image train_image_uri = image_uris.retrieve( region=None, framework=None, model_id=train_model_id, model_version=train_model_version, image_scope=train_scope, instance_type=training_instance_type ) # Retrieve the training script train_source_uri = script_uris.retrieve( model_id=train_model_id, model_version=train_model_version, script_scope=train_scope ) train_model_uri = model_uris.retrieve( model_id=train_model_id, model_version=train_model_version, model_scope=train_scope ) # Sample training data is available in this bucket training_data_bucket = f"jumpstart-cache-prod-{aws_region}" training_data_prefix = "training-datasets/tabular_binary/" training_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/train" validation_dataset_s3_path = f"s3://{training_data_bucket}/{training_data_prefix}/validation" output_bucket = sess.default_bucket() output_prefix = "jumpstart-example-tabular-training" s3_output_location = f"s3://{output_bucket}/{output_prefix}/output" from sagemaker import hyperparameters # Retrieve the default hyperparameters for training the model hyperparameters = hyperparameters.retrieve_default( model_id=train_model_id, model_version=train_model_version ) # [Optional] Override default hyperparameters with custom values hyperparameters[ "n_epochs" ] = "50" print(hyperparameters) from sagemaker.estimator import Estimator from sagemaker.utils import name_from_base training_job_name = name_from_base(f"built-in-algo-{train_model_id}-training") # Create SageMaker Estimator instance tabular_estimator = Estimator( role=aws_role, image_uri=train_image_uri, source_dir=train_source_uri, model_uri=train_model_uri, entry_point="transfer_learning.py", instance_count=1, instance_type=training_instance_type, max_run=360000, hyperparameters=hyperparameters, output_path=s3_output_location ) # Launch a SageMaker Training job by passing the S3 path of the training data tabular_estimator.fit( { "training": training_dataset_s3_path, "validation": validation_dataset_s3_path, }, logs=True, job_name=training_job_name )
Weitere Informationen dazu, wie Sie den TabTransformer als integrierten Algorithmus einrichten, finden Sie in den folgenden Notebook-Beispielen.