Sélectionner vos préférences de cookies

Nous utilisons des cookies essentiels et des outils similaires qui sont nécessaires au fonctionnement de notre site et à la fourniture de nos services. Nous utilisons des cookies de performance pour collecter des statistiques anonymes afin de comprendre comment les clients utilisent notre site et d’apporter des améliorations. Les cookies essentiels ne peuvent pas être désactivés, mais vous pouvez cliquer sur « Personnaliser » ou « Refuser » pour refuser les cookies de performance.

Si vous êtes d’accord, AWS et les tiers approuvés utiliseront également des cookies pour fournir des fonctionnalités utiles au site, mémoriser vos préférences et afficher du contenu pertinent, y compris des publicités pertinentes. Pour accepter ou refuser tous les cookies non essentiels, cliquez sur « Accepter » ou « Refuser ». Pour effectuer des choix plus détaillés, cliquez sur « Personnaliser ».

Modèles SageMaker de cartes Amazon

Mode de mise au point
Modèles SageMaker de cartes Amazon - Amazon SageMaker AI

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Les traductions sont fournies par des outils de traduction automatique. En cas de conflit entre le contenu d'une traduction et celui de la version originale en anglais, la version anglaise prévaudra.

Important

Amazon SageMaker Model Card est intégré au SageMaker Model Registry. Si vous enregistrez un modèle dans Model Registry, vous pouvez utiliser l'intégration pour ajouter des informations d'audit. Pour de plus amples informations, veuillez consulter Mettre à jour les détails d'une version de modèle.

Utilisez les Amazon SageMaker Model Cards pour documenter les détails essentiels de vos modèles d'apprentissage automatique (ML) en un seul endroit afin de rationaliser la gouvernance et les rapports. Les cartes modèles peuvent vous aider à recueillir des informations clés sur vos modèles tout au long de leur cycle de vie et à mettre en œuvre des pratiques responsables en matière d'IA.

Les détails du catalogue tels que l'utilisation prévue et l'évaluation des risques d'un modèle, les détails et les mesures de l'entraînement, les résultats de l'évaluation et les observations, ainsi que des rappels supplémentaires tels que des considérations, des recommandations et des informations personnalisées. En créant des fiches modèles, vous pouvez :

  • Fournir des conseils sur la façon dont un modèle doit être utilisé.

  • Soutenir les activités d'audit avec des descriptions détaillées de l'entraînement et des performances des modèles.

  • Expliquer comment un modèle est destiné à soutenir les objectifs commerciaux.

Les fiches modèles fournissent des conseils prescriptifs sur les informations à documenter et incluent des champs permettant d'ajouter des informations personnalisées. Après avoir créé un modèle de fiche, vous pouvez l'exporter au format PDF ou la télécharger pour la partager avec les parties prenantes concernées. Toute modification autre qu'une mise à jour du statut d'approbation apportée à une fiche modèle entraîne la création de versions supplémentaires de la fiche modèle, ce qui permet de disposer d'un enregistrement immuable des modifications apportées au modèle.

Prérequis

Pour commencer à utiliser Amazon SageMaker Model Cards, vous devez être autorisé à créer, modifier, afficher et exporter des modèles de cartes.

Utilisations prévues d'un modèle

La spécification des utilisations prévues d'un modèle permet de garantir que les développeurs et les utilisateurs du modèle disposent des informations dont ils ont besoin pour former ou déployer le modèle de manière responsable. Les utilisations prévues d'un modèle doivent décrire les scénarios dans lesquels il est approprié d'utiliser le modèle ainsi que ceux dans lesquels il n'est pas recommandé de l'utiliser.

Nous vous recommandons d'inclure :

  • L'objectif général du modèle

  • Les cas d'utilisation auxquels le modèle était destiné

  • Les ces cas d'utilisation auxquels le modèle n'était pas destiné

  • Les hypothèses formulées lors de l'élaboration du modèle

Les utilisations prévues d'un modèle vont au-delà des détails techniques et décrivent la manière dont un modèle doit être utilisé en production, les scénarios dans lesquels il est approprié de l'utiliser et des considérations supplémentaires telles que le type de données à utiliser avec le modèle ou toute hypothèse formulée au cours du développement.

Évaluations de risque

Les développeurs créent des modèles de machine learning pour des cas d'utilisation présentant différents niveaux de risque. Par exemple, un modèle qui approuve les demandes de prêt peut présenter un risque supérieur à celui d'un modèle qui détecte la catégorie d'un e-mail. Compte tenu de la diversité des profils de risque d'un modèle, les fiches modèles fournissent un champ vous permettant de classer le niveau de risque d'un modèle.

Cette note de risque peut être unknown, low, medium ou high. Utilisez ces champs d'évaluation des risques pour étiqueter les modèles à risque inconnu, faible, moyen ou élevé, et ainsi aider votre organisation à se conformer aux règles existantes concernant la mise en production de certains modèles.

Schéma JSON de fiche modèle

Les détails d'évaluation d'une fiche modèle doivent être fournis au format JSON. Si vous disposez de rapports d'évaluation au format JSON générés par SageMaker Clarify ou SageMaker AI Model Monitor, téléchargez-les sur Amazon S3 et fournissez un URI S3 pour analyser automatiquement les métriques d'évaluation. Pour plus d'informations et des exemples de rapports, consultez le dossier d'exemples de métriques dans le carnet d'exemples Amazon SageMaker Model Governance - Model Cards.

Lorsque vous créez une carte modèle à l'aide du SDK SageMaker Python, le contenu du modèle doit figurer dans le schéma JSON de la carte modèle et être fourni sous forme de chaîne. Fournissez un contenu de modèle similaire à l'exemple ci-dessous.

{ "$schema": "http://json-schema.org/draft-07/schema#", "$id": "http://json-schema.org/draft-07/schema#", "title": "SageMakerModelCardSchema", "description": "Internal model card schema for SageMakerRepositoryService without model_package_details", "version": "0.1.0", "type": "object", "additionalProperties": false, "properties": { "model_overview": { "description": "Overview about the model", "type": "object", "additionalProperties": false, "properties": { "model_description": { "description": "description of model", "type": "string", "maxLength": 1024 }, "model_creator": { "description": "Creator of model", "type": "string", "maxLength": 1024 }, "model_artifact": { "description": "Location of the model artifact", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } }, "algorithm_type": { "description": "Algorithm used to solve the problem", "type": "string", "maxLength": 1024 }, "problem_type": { "description": "Problem being solved with the model", "type": "string" }, "model_owner": { "description": "Owner of model", "type": "string", "maxLength": 1024 } } }, "intended_uses": { "description": "Intended usage of model", "type": "object", "additionalProperties": false, "properties": { "purpose_of_model": { "description": "Why the model was developed?", "type": "string", "maxLength": 2048 }, "intended_uses": { "description": "intended use cases", "type": "string", "maxLength": 2048 }, "factors_affecting_model_efficiency": { "type": "string", "maxLength": 2048 }, "risk_rating": { "description": "Risk rating for model card", "$ref": "#/definitions/risk_rating" }, "explanations_for_risk_rating": { "type": "string", "maxLength": 2048 } } }, "business_details": { "description": "Business details of model", "type": "object", "additionalProperties": false, "properties": { "business_problem": { "description": "What business problem does the model solve?", "type": "string", "maxLength": 2048 }, "business_stakeholders": { "description": "Business stakeholders", "type": "string", "maxLength": 2048 }, "line_of_business": { "type": "string", "maxLength": 2048 } } }, "training_details": { "description": "Overview about the training", "type": "object", "additionalProperties": false, "properties": { "objective_function": { "description": "the objective function the model will optimize for", "function": { "$ref": "#/definitions/objective_function" }, "notes": { "type": "string", "maxLength": 1024 } }, "training_observations": { "type": "string", "maxLength": 1024 }, "training_job_details": { "type": "object", "additionalProperties": false, "properties": { "training_arn": { "description": "SageMaker Training job arn", "type": "string", "maxLength": 1024 }, "training_datasets": { "description": "Location of the model datasets", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } }, "training_environment": { "type": "object", "additionalProperties": false, "properties": { "container_image": { "description": "SageMaker training image uri", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } } } }, "training_metrics": { "type": "array", "items": { "maxItems": 50, "$ref": "#/definitions/training_metric" } }, "user_provided_training_metrics": { "type": "array", "items": { "maxItems": 50, "$ref": "#/definitions/training_metric" } }, "hyper_parameters": { "type": "array", "items": { "maxItems": 100, "$ref": "#/definitions/training_hyper_parameter" } }, "user_provided_hyper_parameters": { "type": "array", "items": { "maxItems": 100, "$ref": "#/definitions/training_hyper_parameter" } } } } } }, "evaluation_details": { "type": "array", "default": [], "items": { "type": "object", "required": [ "name" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,63}" }, "evaluation_observation": { "type": "string", "maxLength": 2096 }, "evaluation_job_arn": { "type": "string", "maxLength": 256 }, "datasets": { "type": "array", "items": { "type": "string", "maxLength": 1024 }, "maxItems": 10 }, "metadata": { "description": "additional attributes associated with the evaluation results", "type": "object", "additionalProperties": { "type": "string", "maxLength": 1024 } }, "metric_groups": { "type": "array", "default": [], "items": { "type": "object", "required": [ "name", "metric_data" ], "properties": { "name": { "type": "string", "pattern": ".{1,63}" }, "metric_data": { "type": "array", "items": { "anyOf": [ { "$ref": "#/definitions/simple_metric" }, { "$ref": "#/definitions/linear_graph_metric" }, { "$ref": "#/definitions/bar_chart_metric" }, { "$ref": "#/definitions/matrix_metric" } ] } } } } } } } }, "additional_information": { "additionalProperties": false, "type": "object", "properties": { "ethical_considerations": { "description": "Any ethical considerations that the author wants to provide", "type": "string", "maxLength": 2048 }, "caveats_and_recommendations": { "description": "Caveats and recommendations for people who might use this model in their applications.", "type": "string", "maxLength": 2048 }, "custom_details": { "type": "object", "additionalProperties": { "$ref": "#/definitions/custom_property" } } } } }, "definitions": { "source_algorithms": { "type": "array", "minContains": 1, "maxContains": 1, "items": { "type": "object", "additionalProperties": false, "required": [ "algorithm_name" ], "properties": { "algorithm_name": { "description": "The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.", "type": "string", "maxLength": 170 }, "model_data_url": { "description": "The Amazon S3 path where the model artifacts, which result from model training, are stored.", "type": "string", "maxLength": 1024 } } } }, "inference_specification": { "type": "object", "additionalProperties": false, "required": [ "containers" ], "properties": { "containers": { "description": "Contains inference related information which were used to create model package.", "type": "array", "minContains": 1, "maxContains": 15, "items": { "type": "object", "additionalProperties": false, "required": [ "image" ], "properties": { "model_data_url": { "description": "The Amazon S3 path where the model artifacts, which result from model training, are stored.", "type": "string", "maxLength": 1024 }, "image": { "description": "Inference environment path. The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.", "type": "string", "maxLength": 255 }, "nearest_model_name": { "description": "The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model.", "type": "string" } } } } } }, "risk_rating": { "description": "Risk rating of model", "type": "string", "enum": [ "High", "Medium", "Low", "Unknown" ] }, "custom_property": { "description": "Additional property in section", "type": "string", "maxLength": 1024 }, "objective_function": { "description": "objective function that training job is optimized for", "additionalProperties": false, "properties": { "function": { "type": "string", "enum": [ "Maximize", "Minimize" ] }, "facet": { "type": "string", "maxLength": 63 }, "condition": { "type": "string", "maxLength": 63 } } }, "training_metric": { "description": "training metric data", "type": "object", "required": [ "name", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "value": { "type": "number" } } }, "training_hyper_parameter": { "description": "training hyper parameter", "type": "object", "required": [ "name" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "value": { "type": "string", "pattern": ".{0,255}" } } }, "linear_graph_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "linear_graph" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "array", "items": { "type": "number" }, "minItems": 2, "maxItems": 2 }, "minItems": 1 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_string" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "bar_chart_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "bar_chart" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "number" }, "minItems": 1 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_array" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "matrix_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "matrix" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "array", "items": { "type": "number" }, "minItems": 1, "maxItems": 20 }, "minItems": 1, "maxItems": 20 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_array" }, "y_axis_name": { "$ref": "#/definitions/axis_name_array" } } }, "simple_metric": { "description": "metric data", "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "number", "string", "boolean" ] }, "value": { "anyOf": [ { "type": "number" }, { "type": "string", "maxLength": 63 }, { "type": "boolean" } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_string" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "axis_name_array": { "type": "array", "items": { "type": "string", "maxLength": 63 } }, "axis_name_string": { "type": "string", "maxLength": 63 } } }

Exemple de fichier de schéma JSON de fiche modèle

{ "$schema": "http://json-schema.org/draft-07/schema#", "$id": "http://json-schema.org/draft-07/schema#", "title": "SageMakerModelCardSchema", "description": "Internal model card schema for SageMakerRepositoryService without model_package_details", "version": "0.1.0", "type": "object", "additionalProperties": false, "properties": { "model_overview": { "description": "Overview about the model", "type": "object", "additionalProperties": false, "properties": { "model_description": { "description": "description of model", "type": "string", "maxLength": 1024 }, "model_creator": { "description": "Creator of model", "type": "string", "maxLength": 1024 }, "model_artifact": { "description": "Location of the model artifact", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } }, "algorithm_type": { "description": "Algorithm used to solve the problem", "type": "string", "maxLength": 1024 }, "problem_type": { "description": "Problem being solved with the model", "type": "string" }, "model_owner": { "description": "Owner of model", "type": "string", "maxLength": 1024 } } }, "intended_uses": { "description": "Intended usage of model", "type": "object", "additionalProperties": false, "properties": { "purpose_of_model": { "description": "Why the model was developed?", "type": "string", "maxLength": 2048 }, "intended_uses": { "description": "intended use cases", "type": "string", "maxLength": 2048 }, "factors_affecting_model_efficiency": { "type": "string", "maxLength": 2048 }, "risk_rating": { "description": "Risk rating for model card", "$ref": "#/definitions/risk_rating" }, "explanations_for_risk_rating": { "type": "string", "maxLength": 2048 } } }, "business_details": { "description": "Business details of model", "type": "object", "additionalProperties": false, "properties": { "business_problem": { "description": "What business problem does the model solve?", "type": "string", "maxLength": 2048 }, "business_stakeholders": { "description": "Business stakeholders", "type": "string", "maxLength": 2048 }, "line_of_business": { "type": "string", "maxLength": 2048 } } }, "training_details": { "description": "Overview about the training", "type": "object", "additionalProperties": false, "properties": { "objective_function": { "description": "the objective function the model will optimize for", "function": { "$ref": "#/definitions/objective_function" }, "notes": { "type": "string", "maxLength": 1024 } }, "training_observations": { "type": "string", "maxLength": 1024 }, "training_job_details": { "type": "object", "additionalProperties": false, "properties": { "training_arn": { "description": "SageMaker Training job arn", "type": "string", "maxLength": 1024 }, "training_datasets": { "description": "Location of the model datasets", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } }, "training_environment": { "type": "object", "additionalProperties": false, "properties": { "container_image": { "description": "SageMaker training image uri", "type": "array", "maxContains": 15, "items": { "type": "string", "maxLength": 1024 } } } }, "training_metrics": { "type": "array", "items": { "maxItems": 50, "$ref": "#/definitions/training_metric" } }, "user_provided_training_metrics": { "type": "array", "items": { "maxItems": 50, "$ref": "#/definitions/training_metric" } }, "hyper_parameters": { "type": "array", "items": { "maxItems": 100, "$ref": "#/definitions/training_hyper_parameter" } }, "user_provided_hyper_parameters": { "type": "array", "items": { "maxItems": 100, "$ref": "#/definitions/training_hyper_parameter" } } } } } }, "evaluation_details": { "type": "array", "default": [], "items": { "type": "object", "required": [ "name" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,63}" }, "evaluation_observation": { "type": "string", "maxLength": 2096 }, "evaluation_job_arn": { "type": "string", "maxLength": 256 }, "datasets": { "type": "array", "items": { "type": "string", "maxLength": 1024 }, "maxItems": 10 }, "metadata": { "description": "additional attributes associated with the evaluation results", "type": "object", "additionalProperties": { "type": "string", "maxLength": 1024 } }, "metric_groups": { "type": "array", "default": [], "items": { "type": "object", "required": [ "name", "metric_data" ], "properties": { "name": { "type": "string", "pattern": ".{1,63}" }, "metric_data": { "type": "array", "items": { "anyOf": [ { "$ref": "#/definitions/simple_metric" }, { "$ref": "#/definitions/linear_graph_metric" }, { "$ref": "#/definitions/bar_chart_metric" }, { "$ref": "#/definitions/matrix_metric" } ] } } } } } } } }, "additional_information": { "additionalProperties": false, "type": "object", "properties": { "ethical_considerations": { "description": "Any ethical considerations that the author wants to provide", "type": "string", "maxLength": 2048 }, "caveats_and_recommendations": { "description": "Caveats and recommendations for people who might use this model in their applications.", "type": "string", "maxLength": 2048 }, "custom_details": { "type": "object", "additionalProperties": { "$ref": "#/definitions/custom_property" } } } } }, "definitions": { "source_algorithms": { "type": "array", "minContains": 1, "maxContains": 1, "items": { "type": "object", "additionalProperties": false, "required": [ "algorithm_name" ], "properties": { "algorithm_name": { "description": "The name of an algorithm that was used to create the model package. The algorithm must be either an algorithm resource in your SageMaker account or an algorithm in AWS Marketplace that you are subscribed to.", "type": "string", "maxLength": 170 }, "model_data_url": { "description": "The Amazon S3 path where the model artifacts, which result from model training, are stored.", "type": "string", "maxLength": 1024 } } } }, "inference_specification": { "type": "object", "additionalProperties": false, "required": [ "containers" ], "properties": { "containers": { "description": "Contains inference related information which were used to create model package.", "type": "array", "minContains": 1, "maxContains": 15, "items": { "type": "object", "additionalProperties": false, "required": [ "image" ], "properties": { "model_data_url": { "description": "The Amazon S3 path where the model artifacts, which result from model training, are stored.", "type": "string", "maxLength": 1024 }, "image": { "description": "Inference environment path. The Amazon EC2 Container Registry (Amazon ECR) path where inference code is stored.", "type": "string", "maxLength": 255 }, "nearest_model_name": { "description": "The name of a pre-trained machine learning benchmarked by Amazon SageMaker Inference Recommender model that matches your model.", "type": "string" } } } } } }, "risk_rating": { "description": "Risk rating of model", "type": "string", "enum": [ "High", "Medium", "Low", "Unknown" ] }, "custom_property": { "description": "Additional property in section", "type": "string", "maxLength": 1024 }, "objective_function": { "description": "objective function that training job is optimized for", "additionalProperties": false, "properties": { "function": { "type": "string", "enum": [ "Maximize", "Minimize" ] }, "facet": { "type": "string", "maxLength": 63 }, "condition": { "type": "string", "maxLength": 63 } } }, "training_metric": { "description": "training metric data", "type": "object", "required": [ "name", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "value": { "type": "number" } } }, "training_hyper_parameter": { "description": "training hyper parameter", "type": "object", "required": [ "name" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "value": { "type": "string", "pattern": ".{0,255}" } } }, "linear_graph_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "linear_graph" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "array", "items": { "type": "number" }, "minItems": 2, "maxItems": 2 }, "minItems": 1 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_string" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "bar_chart_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "bar_chart" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "number" }, "minItems": 1 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_array" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "matrix_metric": { "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "matrix" ] }, "value": { "anyOf": [ { "type": "array", "items": { "type": "array", "items": { "type": "number" }, "minItems": 1, "maxItems": 20 }, "minItems": 1, "maxItems": 20 } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_array" }, "y_axis_name": { "$ref": "#/definitions/axis_name_array" } } }, "simple_metric": { "description": "metric data", "type": "object", "required": [ "name", "type", "value" ], "additionalProperties": false, "properties": { "name": { "type": "string", "pattern": ".{1,255}" }, "notes": { "type": "string", "maxLength": 1024 }, "type": { "type": "string", "enum": [ "number", "string", "boolean" ] }, "value": { "anyOf": [ { "type": "number" }, { "type": "string", "maxLength": 63 }, { "type": "boolean" } ] }, "x_axis_name": { "$ref": "#/definitions/axis_name_string" }, "y_axis_name": { "$ref": "#/definitions/axis_name_string" } } }, "axis_name_array": { "type": "array", "items": { "type": "string", "maxLength": 63 } }, "axis_name_string": { "type": "string", "maxLength": 63 } } }

Rubrique précédente :

Gouvernance du modèle
ConfidentialitéConditions d'utilisation du sitePréférences de cookies
© 2025, Amazon Web Services, Inc. ou ses affiliés. Tous droits réservés.