Tune an Object Detection - TensorFlow model - Amazon SageMaker AI

Tune an Object Detection - TensorFlow model

Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by running many jobs that test a range of hyperparameters on your dataset. You choose the tunable hyperparameters, a range of values for each, and an objective metric. You choose the objective metric from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters chosen to find the combination of values that result in the model that optimizes the objective metric.

For more information about model tuning, see Automatic model tuning with SageMaker AI.

Metrics computed by the Object Detection - TensorFlow algorithm

Refer to the following chart to find which metrics are computed by the Object Detection - TensorFlow algorithm.

Metric Name Description Optimization Direction Regex Pattern
validation:localization_loss

The localization loss for box prediction.

Minimize

Val_localization=([0-9\\.]+)

Tunable Object Detection - TensorFlow hyperparameters

Tune an object detection model with the following hyperparameters. The hyperparameters that have the greatest impact on object detection objective metrics are: batch_size, learning_rate, and optimizer. Tune the optimizer-related hyperparameters, such as momentum, regularizers_l2, beta_1, beta_2, and eps based on the selected optimizer. For example, use beta_1 and beta_2 only when adam is the optimizer.

For more information about which hyperparameters are used for each optimizer, see Object Detection - TensorFlow Hyperparameters.

Parameter Name Parameter Type Recommended Ranges
batch_size

IntegerParameterRanges

MinValue: 8, MaxValue: 512

beta_1

ContinuousParameterRanges

MinValue: 1e-6, MaxValue: 0.999

beta_2

ContinuousParameterRanges

MinValue: 1e-6, MaxValue: 0.999

eps

ContinuousParameterRanges

MinValue: 1e-8, MaxValue: 1.0

learning_rate

ContinuousParameterRanges

MinValue: 1e-6, MaxValue: 0.5

momentum

ContinuousParameterRanges

MinValue: 0.0, MaxValue: 0.999

optimizer

CategoricalParameterRanges

['sgd', ‘adam’, ‘rmsprop’, 'nesterov', 'adagrad', 'adadelta']

regularizers_l2

ContinuousParameterRanges

MinValue: 0.0, MaxValue: 0.999

train_only_on_top_layer

CategoricalParameterRanges

['True', 'False']

initial_accumulator_value

CategoricalParameterRanges

MinValue: 0.0, MaxValue: 0.999