Tune an Object Detection - TensorFlow model
Automatic model tuning, also known as hyperparameter tuning, finds the best version of a model by running many jobs that test a range of hyperparameters on your dataset. You choose the tunable hyperparameters, a range of values for each, and an objective metric. You choose the objective metric from the metrics that the algorithm computes. Automatic model tuning searches the hyperparameters chosen to find the combination of values that result in the model that optimizes the objective metric.
For more information about model tuning, see Automatic model tuning with SageMaker AI.
Metrics computed by the Object Detection - TensorFlow algorithm
Refer to the following chart to find which metrics are computed by the Object Detection - TensorFlow algorithm.
Metric Name | Description | Optimization Direction | Regex Pattern |
---|---|---|---|
validation:localization_loss |
The localization loss for box prediction. |
Minimize |
|
Tunable Object Detection - TensorFlow hyperparameters
Tune an object detection model with the following hyperparameters. The
hyperparameters that have the greatest impact on object detection objective
metrics are: batch_size
, learning_rate
, and
optimizer
. Tune the optimizer-related hyperparameters, such as
momentum
, regularizers_l2
, beta_1
,
beta_2
, and eps
based on the
selected optimizer
. For example, use beta_1
and
beta_2
only when adam
is the
optimizer
.
For more information about which hyperparameters are used for each optimizer
, see
Object Detection - TensorFlow
Hyperparameters.
Parameter Name | Parameter Type | Recommended Ranges |
---|---|---|
batch_size |
IntegerParameterRanges |
MinValue: 8, MaxValue: 512 |
beta_1 |
ContinuousParameterRanges |
MinValue: 1e-6, MaxValue: 0.999 |
beta_2 |
ContinuousParameterRanges |
MinValue: 1e-6, MaxValue: 0.999 |
eps |
ContinuousParameterRanges |
MinValue: 1e-8, MaxValue: 1.0 |
learning_rate |
ContinuousParameterRanges |
MinValue: 1e-6, MaxValue: 0.5 |
momentum |
ContinuousParameterRanges |
MinValue: 0.0, MaxValue: 0.999 |
optimizer |
CategoricalParameterRanges |
['sgd', ‘adam’, ‘rmsprop’, 'nesterov', 'adagrad', 'adadelta'] |
regularizers_l2 |
ContinuousParameterRanges |
MinValue: 0.0, MaxValue: 0.999 |
train_only_on_top_layer |
CategoricalParameterRanges |
['True', 'False'] |
initial_accumulator_value |
CategoricalParameterRanges |
MinValue: 0.0, MaxValue: 0.999 |